Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
(1)H, (15)N, and (13)C NMR assignments for 116 amino acids (Gly893-Lys1008) of a bacterial collagen-binding domain (CBD) derived from Clostridium histolyticum class I collagenase were accomplished. Clostridial collagenases hydrolyze insoluble collagen. One to three copies of collagen-binding domains (CBDs) are present at their C-termini, each of which is the minimal segment required for the binding to the insoluble substrate. CBD has been shown to be able to anchor fused growth factors for up to 10 days in vivo. Structural analysis of the small domain with the unique function provides insights into designing a novel drug delivery vehicle by the rational drug design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718427 | PMC |
http://dx.doi.org/10.1007/s12104-008-9102-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!