RNA phosphodiester backbone dynamics of a perdeuterated cUUCGg tetraloop RNA from phosphorus-31 NMR relaxation analysis.

J Biomol NMR

Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 7, Frankfurt/Main, Germany.

Published: September 2009

We have analyzed the relaxation properties of all (31)P nuclei in an RNA cUUCGg tetraloop model hairpin at proton magnetic field strengths of 300, 600 and 900 MHz in solution. Significant H, P dipolar contributions to R (1) and R (2) relaxation are observed in a protonated RNA sample at 600 MHz. These contributions can be suppressed using a perdeuterated RNA sample. In order to interpret the (31)P relaxation data (R (1), R (2)), we measured the (31)P chemical shift anisotropy (CSA) by solid-state NMR spectroscopy under various salt and hydration conditions. A value of 178.5 ppm for the (31)P CSA in the static state (S (2) = 1) could be determined. In order to obtain information about fast time scale dynamics we performed a modelfree analysis on the basis of our relaxation data. The results show that subnanosecond dynamics detected around the phosphodiester backbone are more pronounced than the dynamics detected for the ribofuranosyl and nucleobase moieties of the individual nucleotides (Duchardt and Schwalbe, J Biomol NMR 32:295-308, 2005; Ferner et al., Nucleic Acids Res 36:1928-1940, 2008). Furthermore, the dynamics of the individual phosphate groups seem to be correlated to the 5' neighbouring nucleobases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10858-009-9343-xDOI Listing

Publication Analysis

Top Keywords

phosphodiester backbone
8
cuucgg tetraloop
8
rna sample
8
relaxation data
8
dynamics detected
8
rna
5
dynamics
5
relaxation
5
rna phosphodiester
4
backbone dynamics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!