ZmMRP-1 is a single MYB-domain transcription factor specifically expressed in the transfer cell layer of the maize endosperm, where it directly regulates the expression of a number of transfer cell specific genes and very likely contributes to the regulation of the transfer cell differentiation process. It is still a matter of debate, however, how this type of transcription factors interact with the promoter sequences they regulate. In this work we have investigated the existence of proteins interacting with ZmMRP-1 in the transfer cell nuclei. In a yeast double-hybrid screen we identified two related maize proteins, ZmMRPI-1 and ZmMRPI-2 belonging to the C(2)H(2) zinc finger protein family, which interact with ZmMRP-1 and modulate its activity on transfer cell specific promoters. Two ZmMRPI orthologous genes were also identified in the rice and Arabidopsis genomes. The expression pattern in maize and Arabidopsis suggest a role for these proteins in gene regulation at the exchange surfaces where ZmMRP-1 is expressed providing the first indication of their function. We show that this previously uncharacterized family of proteins encodes nuclear proteins that interact with MYB-related transcription factors through their C-terminal conserved domain.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-009-0987-2DOI Listing

Publication Analysis

Top Keywords

transfer cell
20
maize endosperm
8
c2h2 zinc
8
cell specific
8
transcription factors
8
transfer
6
proteins
6
zmmrp-1
5
cell
5
transcriptional activation
4

Similar Publications

Protoplast Transformation of Phytophthora spp.

Methods Mol Biol

January 2025

Cell and Molecular Sciences Department, The James Hutton Institute, Dundee, UK.

At the core of assays to understand the role(s) of specific genes is the ability to stably transfer genes into Phytophthora through transformation. A key method for achieving this has been based on polyethylene glycol (PEG)/CaCl transformation of protoplasts, but efficiency has often been low. Improving transformation efficiency is necessary for many applications, such as gene knockouts.

View Article and Find Full Text PDF

Identifying target proteins for bioactive molecules is essential for understanding their mechanisms, developing improved derivatives, and minimizing off-target effects. Despite advances in target identification (target-ID) technologies, significant challenges remain, impeding drug development. Most target-ID methods use cell lysates, but maintaining an intact cellular context is vital for capturing specific drug-protein interactions, such as those with transient protein complexes and membrane-associated proteins.

View Article and Find Full Text PDF

Charge Transfer Mechanism in Type II WO/CuO Heterostructure.

Nanomaterials (Basel)

December 2024

Laboratory of Photoactive Nanocomposite Materials, Saint Petersburg State University, 199034 Saint-Petersburg, Russia.

In this study, we explore the charge transfer mechanism between WO and CuO in heterostructured WO/CuO electrodes and in a WO||CuO tandem photoelectrochemical cell. The physical-chemical characterizations of the individual WO and CuO electrodes and the heterostructured WO/CuO electrode by XRD, XPS, and SEM methods confirm the successful formation of the target systems. The results of photoelectrochemical studies infer that in both the heterostructured WO/CuO electrode and WO||CuO tandem photoelectrochemical cell, the major mechanism of charge transfer between WO and CuO is a realization of the Z-scheme.

View Article and Find Full Text PDF

Proton exchange membrane fuel cells (PEMFCs) are being pursued for applications in the maritime industry to meet stringent ship emissions regulations. Further basic research is needed to improve the performance of PEMFCs in marine environments. Assembly stress compresses the gas diffusion layer (GDL) beneath the ribs, significantly altering its pore structure and internal transport properties.

View Article and Find Full Text PDF

The Hemibiotrophic Apple Scab Fungus Induces a Biotrophic Interface but Lacks a Necrotrophic Stage.

J Fungi (Basel)

November 2024

Institute of Crop Science and Resource Conservation-Plant Pathology, Rheinische Friedrich-Wilhelms-Universitaet Bonn, 53115 Bonn, Germany.

Microscopic evidence demonstrated a strictly biotrophic lifestyle of the scab fungus on growing apple leaves and characterised its hemibiotrophy as the combination of biotrophy and saprotrophy not described before. The pathogen-host interface was characterised by the formation of knob-like structures of the fungal stroma appressed to epidermal cells as early as 1 day after host penetration, very thin fan-shaped cells covering large parts of the host cell lumen, and enzymatic cuticle penetration from the subcuticular space limited to the protruding conidiophores. The cell wall had numerous orifices, facilitating intimate contact with the host tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!