Here we show that dielectrophoretic (DEP) liquid actuation can be used to dispense arrays of nanoliter-sized droplets loaded with biomolecules. Size-based enrichment of these biomolecules occurs rapidly and simultaneously with the droplet dispensing. The physical mechanism responsible for the effect is the positive DEP force directed toward the electrodes that is imposed by the non-uniform electric field during the very rapid DEP actuated flow before droplet formation. Experiments conducted with a suspension of lambda DNA (molecular weight: 31.5 x 10(3) kDa) and lectin protein (120 kDa) containing identical molar concentration shows separation of DNA and protein within the nanolitre sized droplets formed along the electrode. The density ratio of protein to DNA varies smoothly from 1 : 1 in the parent droplet to approximately 3 : 1, favoring the smaller sized protein in the daughter droplet dispensed furthest from the parent droplet, approximately 2.4 mm from the parent droplet. Experiments conducted with binary protein solutions containing identical molar concentrations of bovine serum albumin (66 kDa) and fibrinogen (340 kDa) reveal that enrichment is enhanced as the length of the electrodes is increased. The density ratio of BSA to fibrinogen varied from 1 : 1 in the parent droplet to approximately 1.97 : 1 at the last (tenth) droplet, located approximately 4.2 mm from the parent droplet. The entire process, consisting of droplet dispensing and particle separation, occurs in less than one second.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b903831k | DOI Listing |
Chemistry
March 2025
University of Hawaii at Manoa, Chemistry, 2545 McCarthy Mall, 96822, Honolulu, UNITED STATES OF AMERICA.
Hypergolic ionic liquids (HILs) represent a critical pool of reactive ionic liquids which ignite spontaneously in absence of oxygen when mixed with an oxidizer such as white fuming nitric acid (WFNA, HNO3) or hydrogen peroxide (H2O2). These HILs have emerged as greener alternative to the toxic hydrazine family of fuels for operations in space under anaerobic conditions. Here, we report on the unusual atmospheric ignition chemistry of the 1-ethyl-3-methylimidazolium cyanoborohydride ([EMIM][CBH])-H2O2 bipropellant while comparing with the parent hypergolic reaction by exploiting a chirped-pulse triggered droplet merging technique in an ultrasonic levitation apparatus under controlled environment.
View Article and Find Full Text PDFBreast Cancer Res
March 2025
Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
Background: Lipid metabolic reprogramming is increasingly recognized as a hallmark of endocrine resistance in estrogen receptor-positive (ER+) breast cancer. In this study, we investigated alterations in lipid metabolism in ER + breast cancer cell lines with acquired resistance to common endocrine therapies and evaluated the efficacy of a clinically relevant fatty acid synthase (FASN) inhibitor.
Methods: ER + breast cancer cell lines resistant to Tamoxifen (TamR), Fulvestrant (FulvR), and long-term estrogen withdrawal (EWD) were derived.
Pathol Res Pract
February 2025
BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea. Electronic address:
Extracellular vesicles (EVs), isolated through techniques such as liquid biopsy, have emerged as crucial biomarkers in various diseases, including cancer. EVs were dismissed initially as cellular debris, EVs are now recognized for their role in intercellular communication, carrying proteins, RNAs, and other molecules between cells. Their stability in biofluids and ability to mirror their parent cells' molecular composition make them attractive candidates for non-invasive diagnostics.
View Article and Find Full Text PDFJ Hum Genet
April 2025
School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
Autosomal dominant variants in transcription factor 20 (TCF20) can result in TCF20-associated neurodevelopmental disorder (TAND), a condition characterized by developmental delay and intellectual disability, autism, dysmorphisms, dystonia, and variable other neurological features. To date, a total of 91 individuals with TAND have been reported; ~67% of cases arose de novo, while ~10% were inherited, and, intriguingly, ~8% were either confirmed or suspected to have arisen via germline mosaicism. Here, we describe two siblings with a developmental condition characterized by intellectual disability, autism, a circadian rhythm sleep disorder, and attention deficit hyperactivity disorder (ADHD) caused by a novel heterozygous single nucleotide deletion in the TCF20 gene, NM_001378418.
View Article and Find Full Text PDFPathogens
January 2025
Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
This study reinforces the value of a One Health approach to infectious disease outbreak investigations. After the onset of neuropsychiatric symptoms in their son, our investigation focused on a family composed of a mother, father, two daughters, the son, two dogs, and a rabbit, all with exposures to vectors (fleas and ticks), rescued dogs, and other animals. Between 2020 and 2022, all family members experienced illnesses that included neurological symptoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!