The time-dependent changes of human memory T cell repertoires are still poorly understood. We define a T cell memory repertoire as the pool of clonotypic lineages participating in a recall response to the influenza M1(58-66) epitope. In HLA-A2 individuals, this response predominantly uses BV19 chains with Arg-Ser (RS) in the CDR3 loop. We previously showed that the repertoire is polyclonal with a large fraction of clonotype that are only observed once. In this study, we perform longitudinal analyses of memory repertoires in three middle-aged individuals at times that spanned from 7 to 10 years. In these individuals, who are well into thymic involution, a substantial number of clonotypes were stable, e.g., detected at two times. The shape of the repertoire was stable over time as reflected by a number of repertoire characteristics, including singletons, i.e., the fraction of clonotypes observed only once, and repertoire diversity. However, the RS-clonotype subset showed a significant decline in the fraction of singletons and in clonotypic diversity. Thus, repertoire structure is maintained over time by a recruitment of non-RS-clonotypes and a shift of existing RS-clonotypes into higher frequencies. The recruitment of new clonotypes into the low-frequency component of the repertoire implies a role for these clonotypes.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.0900162DOI Listing

Publication Analysis

Top Keywords

cell memory
8
memory repertoires
8
repertoire
7
compensatory pathways
4
pathways maintain
4
maintain long-term
4
long-term stability
4
stability diversity
4
diversity cd8
4
cd8 cell
4

Similar Publications

Oncolytic viruses (OVs) emerge as a promising cancer immunotherapy. However, the temporal impact on tumor cells and the tumor microenvironment, and the nature of anti-tumor immunity post-therapy remain largely unclear. Here we report that CD4 T cells are required for durable tumor control in syngeneic murine models of glioblastoma multiforme after treatment with an oncolytic herpes simplex virus (oHSV) engineered to express IL-12.

View Article and Find Full Text PDF

Background: In addition to its important roles in blood coagulation and bone formation, vitamin K (VK) contributes to brain function. Low dietary VK intake, which is common among older adults, is associated with age-related cognitive impairment.

Objective: To elucidate the biological mechanisms underlying VK's effects on cognition, we investigated the effects of low VK (LVK) intake on cognition in C57BL/6 mice.

View Article and Find Full Text PDF

Photochemical bomb: Precision nuclear targeting to activate cGAS-STING pathway for enhanced bladder cancer immunotherapy.

Biomaterials

January 2025

Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China; Department of Urology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China. Electronic address:

Activating the cGAS-STING pathway presents a promising strategy to enhance the innate immunity and combat the immunosuppressive tumor microenvironment. One key mechanism for triggering this pathway involves the release of damaged DNA fragments caused by nuclear DNA damage. However, conventional cGAS-STING agonists often suffer from limited nucleus-targeting efficiency and potential biotoxicity.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by memory loss and neuropsychiatric symptoms associated with cerebral amyloid-β (Aβ) and tau pathologies, but whether and how these factors differentially disrupt neural circuits remains unclear. Here, we investigated the vulnerability of memory and emotional circuits to Aβ and tau pathologies in mice expressing mutant human amyloid precursor protein (APP), Tau or both APP/Tau in excitatory neurons. APP/Tau mice develop age- and sex-dependent Aβ and phosphorylated tau pathologies, the latter exacerbated at early stages, in vulnerable brain regions.

View Article and Find Full Text PDF

To overcome the computational barriers of analyzing large-scale single-cell sequencing data, we introduce MetaQ, a metacell algorithm that scales to arbitrarily large datasets with linear runtime and constant memory usage. Inspired by cellular development, MetaQ conceptualizes each metacell as a collective ancestor of biologically similar cells. By quantizing cells into a discrete codebook, where each entry represents a metacell capable of reconstructing the original cells it quantizes, MetaQ identifies homogeneous cell subsets for efficient and accurate metacell inference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!