By decreasing the volume of the cryoprotective solution it is possible to increase dramatically the freezing speed and - at the same time - reduce the toxicity and osmotic side effects of cryoprotectants (CPA). The objective of our study was to vitrify Day-3 cleavage stage mouse embryos (n = 229) with the cryoloop technology using a new composition of vitrification media. Embryos were exposed to a 2-step loading of CPA, ethylene glycol (EG) and propylene glycol (PG), before being placed on the surface of a thin filmy layer formed from the vitrification solution in a small nylon loop, then they were rapidly submerged into liquid nitrogen. After warming, the CPA was diluted out from the embryos by a 3-step procedure. Survival of embryos was based on morphological appearance after thawing and continued development to expanded blastocysts upon subsequent 48-hour culture. Embryos of the two control groups were either treated likewise except that they were not vitrified, or cultured in vitro without any treatment. Our data show that a high percentage of embryos survived (92.7%) vitrification in the mixture of EG and PG combined with cryoloop carrier and developed normally (89.1%) in vitro after thawing. To our knowledge this is the first report of the successful vitrification of cleavage stage mouse embryos using VitroLoop vitrification procedure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1556/AVet.57.2009.3.6 | DOI Listing |
Animals (Basel)
December 2024
College of Animal Science and Technology, Shihezi University, Shihezi 832000, China.
Early embryonic development relies on intricately regulated gene expression, and miRNAs influence zygotic genome activation (ZGA), cleavage, and cell fate determination through post-transcriptional regulatory mechanisms. miR-192 is expressed in early pig embryos and participates in various reproductive processes. However, its role in pre-implantation pig embryo development remains poorly understood.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
Department of Pharmaceutical Analysis, School of Pharmacy, Guizhou Medical University, Gui'an New District, Guizhou 561113, PR China. Electronic address:
Dendrobine is a sesquiterpene alkaloid primarily used in the treatment of inflammatory diseases, immune system disorders, and conditions related to oxidative stress. To understand the possible degradation pathways of dendrobine for its quality control, we conducted an in-depth investigation of its degradation products using forced degradation methods. The separation of dendrobine and its degradation products was achieved on a Shim-pack XR-ODS III (75 mm × 2 mm, 1.
View Article and Find Full Text PDFChem Sci
December 2024
LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
The recently discovered metagenomic urethanases UMG-SP1, UMG-SP2, and UMG-SP3 have emerged as promising tools to establish a bio-based recycling approach for polyurethane (PU) waste. These enzymes are capable of hydrolyzing urethane bonds in low molecular weight dicarbamates as well as in thermoplastic PU and the amide bond in polyamide employing a Ser-Ser -Lys triad for catalysis, similar to members of the amidase signature protein superfamily. Understanding the catalytic mechanism of these urethanases is crucial for enhancing their enzymatic activity and improving PU bio-recycling processes.
View Article and Find Full Text PDFJ Assist Reprod Genet
January 2025
Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China.
Purpose: To assess the association of serum vitamin D level and the live birth rate in women undergoing frozen embryo transfer (FET).
Methods: This is a retrospective cohort study involving 1489 infertile women who had frozen embryo transfer at two tertiary reproductive medicine centres from 2019 to 2021. Only the first frozen embryo transfer was included for women who had repeated transfers during the period.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!