p53 protein plays a central role in suppressing tumorigenesis by inducing cell cycle arrest or apoptosis through transcription-dependent and -independent mechanisms. Emerging publications suggest that following stress, a fraction of p53 translocates to mitochondria to induce cytochrome c release and apoptosis. However, the localization of p53 under unstressed conditions remains largely unexplored. Here we show that p53 is localized at mitochondria in absence of apoptotic stimuli, when cells are proliferating, localization observed in various cell types (rodent and human). This is also supported by acellular assays in which p53 bind strongly to mitochondria isolated from rat liver. Furthermore, the mitochondria subfractionation study and the alkaline treatment of the mitochondrial p53 revealed that the majority of mitochondrial p53 is present in the membranous compartments. Finally, we identified VDAC, a protein of the mitochondrial outer-membrane, as a putative partner of p53 in unstressed/proliferative cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2009.07.111DOI Listing

Publication Analysis

Top Keywords

p53
9
p53 protein
8
mitochondrial p53
8
mitochondrial
4
mitochondrial localization
4
localization low
4
low level
4
level p53
4
protein proliferative
4
proliferative cells
4

Similar Publications

miRNA Expression Profile in Primary Limbal Epithelial Cells of Aniridia Patients.

Invest Ophthalmol Vis Sci

January 2025

Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Homburg/Saar, Germany, Saarland University, Homburg/Saar, Germany.

Purpose: This study evaluates the microRNA (miRNA) expression profile in primary limbal epithelial cells (pLECs) of patients with aniridia.

Methods: Primary human LECs were sampled and isolated from 10 patients with aniridia and 10 healthy donors. The miRNA profile was analyzed using miRNA microarrays.

View Article and Find Full Text PDF

The development of small molecule-based drugs emerged as a cornerstone of modern drug discovery. Structural activity relationship (SAR) studies in medicinal chemistry are crucial for lead optimization, where a subtle change in the substituent can significantly alter its binding affinity with the biological target. Herein, a highly efficient single-atom substitution (SAS) approach has been developed, where sulfur for oxygen strategy is utilized as a powerful molecular editing technique to identify N-vinyl Indole-thiobarbituric acid (6a) as a novel small molecule-based scaffold with tunable photophysical and antiproliferative activities.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

All India Institute of Medical Sciences, New Delhi, India.

Background: Recent research on Alzheimer's disease (AD) has highlighted that the oxidative damage is the earliest event of disease. These oxidative modifications are closely associated with inflammatory molecules. It is necessary to explore these two pathways with AD pathophysiology and targeted for therapeutic intervention.

View Article and Find Full Text PDF

The TP53 mutation is a poor prognostic factor for malignant tumors in a number of organs. The present study primarily aimed to clarify the impact of the mutant pattern of p53 on the prognosis and recurrence of gastric cancer. : For this purpose, 519 patients who underwent radical gastrectomy for cancer were enrolled in the present study.

View Article and Find Full Text PDF

The role of RGPR-p117, a transcription factor, which binds to the TTGGC motif in the promoter region of the regucalcin gene, in cell regulation remains to be investigated. This study elucidated whether RGPR-p117 regulates the activity of triple-negative human breast cancer MDA-MB-231 cells in vitro. The wild-type and RGPR-p117-overexpressing cancer cells were cultured in DMEM supplemented with fetal bovine serum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!