Effect of surface microstructures on the separation efficiency of neurotransmitters on a direct-printed capillary electrophoresis microchip.

Talanta

The Key Laboratory of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

Published: October 2009

The effect of surface microstructures of microchannels on the separation efficiency in microchip electrophoresis has been studied. In order to understand the influence of the surface microstructures on the microchip electrophoresis performance, a thermostatic system was designed and fabricated for precisely control of the chip temperature since the surrounding temperature causes a significant effect on the separation efficiency. The periodically ordered microstructures (dams) of different sizes were fabricated on the microchannels by a simple printing process using different gray levels of the vector graphic software. And the influence of dam sizes in microchannels on the separation efficiency was evaluated by using the number of theoretical plates (N) and the relative resolution (Rs'). Analyzing the variations of mixing elements caused by the periodically ordered dams in the separate channel and elution time, we found that with small dam size fabricated at low gray level of ca. 30%, the resolution of dopamine and epinephrine increased slightly, while it decreased obviously with larger dam sizes especially fabricated at gray level of 50%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2009.05.038DOI Listing

Publication Analysis

Top Keywords

separation efficiency
16
surface microstructures
12
microchannels separation
8
microchip electrophoresis
8
periodically ordered
8
sizes fabricated
8
dam sizes
8
gray level
8
separation
4
microstructures separation
4

Similar Publications

Aerogels hold great potential in thermal insulation, catalytic supports, adsorption, and separation, due to their low density, high porosity, and low thermal conductivity. However, their inherent mechanical fragility and limited control functionality pose substantial challenges that hinder their practical use. In this study, a strategy is developed for the fabrication of cross-linked aramid nanofiber aerogels (cANFAs) by combining internanofiber surface cross-linking with ice-templating techniques.

View Article and Find Full Text PDF

Anion-π Interactions on Functionalized Porous Aromatic Cages for Gold Recovery from Complex Aqueous with High Capacity.

Angew Chem Int Ed Engl

January 2025

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Chemistry, Renmin Street, 130024, Changchun, CHINA.

High capacity, selective recovery and separation of precious metals from complex aqueous solutions is essential but remains a challenge in practical applications. Here, we prepared a thiophene-modified aromatic porous organic cage (T-PAC) with high stability for precise recognition and recovery of gold. T-PAC exhibits an outstanding gold uptake capacity of up to 2260 mg/g with fast adsorption kinetics and high adsorption selectivity.

View Article and Find Full Text PDF

Deep and accurate proteome analysis is crucial for understanding cellular processes and disease mechanisms; however, it is challenging to implement in routine settings. In this protocol, we combine a robust chromatographic platform with a high-performance mass spectrometric setup to enable routine yet in-depth proteome coverage for a broad community. This entails tip-based sample preparation and pre-formed gradients (Evosep One) combined with a trapped ion mobility time-of-flight mass spectrometer (timsTOF, Bruker).

View Article and Find Full Text PDF

Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation.

Nat Mater

January 2025

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.

Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers.

View Article and Find Full Text PDF

Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points.

Nat Commun

January 2025

Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.

Biological neural systems seamlessly integrate perception and action, a feat not efficiently replicated in current physically separated designs of neural-imitating electronics. This segregation hinders coordination and functionality within the neuromorphic system. Here, we present a flexible device tailored for neuromorphic computation and muscle actuation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!