Poly(n-butyl acrylate) membranes for potentiometric ion-selective electrodes were developed and studied on example of lead-selective sensors. A novel approach resulting in Nernstian responses of tested sensor was proposed. Introduction of 5% (w/w) hydroxyethyl methacrylate into n-butyl acrylate moiety resulted in significant improvement of sensor analytical parameters. For the latter membrane material linear responses were obtained within lead activities range from 10(-2) to 10(-9) mol/dm(3), while for poly(n-butyl acrylate) based membranes pretreated in the same manner super-Nernstian behavior was obtained in a parallel experiment. Electrochemical impedance spectroscopy studies did not reveal significant differences between these two membranes, also similar lead ions diffusion coefficients were determined using inductively coupled plasma mass spectrometry with laser ablation.The difference between two kinds of membranes was found to concern higher Pb(II) ions contents in the surface part of the membrane with hydroxyethyl methacrylate, resulting in balanced Pb ions fluxes from/to the membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2009.05.028DOI Listing

Publication Analysis

Top Keywords

polyn-butyl acrylate
12
acrylate based
8
hydroxyethyl methacrylate
8
based lead
4
lead selective
4
selective electrodes
4
electrodes polyn-butyl
4
membranes
4
acrylate membranes
4
membranes potentiometric
4

Similar Publications

We developed antibiotic-based micelles with bone-targeting and charge-switchable properties (P-CASMs) for treating infectious osteomyelitis. The amphiphilic molecules are formed by combining ciprofloxacin (CIP) with ligand 1 through a mild salifying reaction, and spontaneously self-assemble into antibiotic-based micelles (ASMs) in aqueous solution. Acrylate groups on ligand 1 enable cross-linking of ASMs with pentaerythritol tetra(mercaptopropionate) via a click reaction, forming pH-sensitive cross-linked micelles (CASMs).

View Article and Find Full Text PDF

Super-strong hydrogel reinforced by an interconnected hollow microfiber network via regulating the water-cellulose-copolymer interplay.

Sci Bull (Beijing)

January 2025

Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:

The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.

View Article and Find Full Text PDF

Background: Real-world data regarding patients with non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion (ex20ins) mutations receiving mobocertinib are limited. This study describes these patients' characteristics and outcomes.

Methods: A chart review was conducted across three countries (Canada, France, and Hong Kong), abstracting data from eligible patients (NCT05207423).

View Article and Find Full Text PDF

Preparation and Performance Research of Pb(II)-Imprinted Acrylonitrile-Co-Acrylic Acid Composite Material with Modified Sand Particles as Carrier.

Polymers (Basel)

January 2025

Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, School of Chemical Engineering, Xinjiang University, Urumqi 830017, China.

Lead (Pb) is classified as a prevalent metallic pollutant, significantly impacting the ecological environment, especially human health. Consequently, it is crucial to develop adsorbent materials that are environmentally friendly, cost-effective, and which possess high selectivity. This study aims to fabricate a Pb(II)-imprinted acrylonitrile-co-acrylic acid composite material by using modified sand particles as the carrier, and then to investigate its properties.

View Article and Find Full Text PDF

Synthesis of P(AM/AA/SSS/DMAAC-16) and Studying Its Performance as a Fracturing Thickener in Oilfields.

Polymers (Basel)

January 2025

Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an 710065, China.

In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil-water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil-water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!