The gene for human preprorenin was obtained from total RNA prepared from primary human chorion cells. An expression vector was constructed containing an SV40 early promoter, a human preprorenin cDNA, bovine growth hormone poly-A addition signal, and a dihydrofolate reductase (dhfr) expression cassette. This vector was inserted into the DXB-11 Chinese hamster ovary (CHO) cell line. The recombinant protein was exported by CHO cells into the tissue culture media. At harvest the prorenin levels ranged from approximately 1-5 mg/L. For prorenin isolation the cell culture supernatants were processed by filtration, concentration, dialysis, and batch extraction. Preparative-scale isolation of prorenin was accomplished using blue-dye chromatography and size-exclusion chromatography. The isolated prorenin yielded a single SDS-gel band with Mr approximately 40,000. The proprotein was characterized with respect to N-terminal sequence and N-linked sugar composition. Trypsin-activated renin prepared from the proprotein was characterized with respect to N-terminal sequence and pH-activity profile. Enzyme activity was measured with a newly developed fluorogenic peptide substrate containing the P6-P'3 sequence of human angiotensinogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01024761 | DOI Listing |
Background: The development and approval of novel drugs are typically time-intensive and expensive. Leveraging a computational drug repurposing framework that integrates disease-relevant genetically regulated gene expression (GReX) and large longitudinal electronic medical record (EMR) databases can expedite the repositioning of existing medications. However, validating computational predictions of the drug repurposing framework remains a challenge.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
Tin halide perovskites are promising candidates for lead-free perovskite solar cells due to their ideal bandgap and high charge-carrier mobility. However, poor crystal quality and rapid degradation in ambient conditions severely limit their stability and practical applications. This study demonstrates that incorporating UiO-66, a zirconium-based MOF, significantly enhances the performance and stability of tin halide perovskite solar cells (TPSCs).
View Article and Find Full Text PDFOtolaryngol Head Neck Surg
January 2025
Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA.
Objective: Cystic fibrosis (CF) is a clinical entity defined by aberrant chloride (Cl) ion transport causing downstream effects on mucociliary clearance (MCC) in sinonasal epithelia. Inducible deficiencies in transepithelial Cl transport via CF transmembrane conductance regulator (CFTR) has been theorized to be a driving process in recalcitrant chronic rhinosinusitis (CRS) in patients without CF. We have previously identified that brief exposures to bacterial lipopolysaccharide (LPS) in mammalian cells induces an acquired dysfunction of CFTR in vitro and in vivo.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan.
Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.
View Article and Find Full Text PDFComput Biol Chem
January 2025
Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; Elicure, 12, Gyeongyeol-ro 17 beon-gil, Seo-gu, Gwangju, Republic of Korea. Electronic address:
This study aimed to profile metabolites from five Trichoderma strains and assess their cytotoxic and pharmacological activities, particularly targeting oral squamous cell carcinoma (OSCC). UHPLC-TOF-MS analysis revealed the presence of 25 compounds, including heptelidic acid, viridiol isomers, and sorbicillinol from the different Trichoderma extracts. Pharmacokinetic analysis showed moderate permeability and low interaction with P-glycoprotein, suggesting good drug absorption with minimal interference in cellular uptake.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!