Porcine CSRP3: polymorphism and association analyses with meat quality traits and comparative analyses with CSRP1 and CSRP2.

Mol Biol Rep

Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.

Published: January 2010

CRP3 is the muscle-specific form of the cysteine and glycine-rich protein family and plays an important role in myofiber differentiation. Here we isolated and characterized its coding gene CSRP3 from porcine muscle. Phylogenic analyses demonstrated that CSRP3 diverged first and is distinguished from two other members, CSRP1 and CSRP2. CSRP3 mRNA was up-regulated during the development of porcine embryonic skeletal muscle, indicating its potential importance in muscle growth. Genetic variant analyses detected multiple variations in an approximately 400 bp region covering exon 4 and its downstream intron, and two haplotypes were identified by sequencing. One of synonymous substitutions C1924T was used for linkage and association analyses. It was revealed that the substitution of C1924T had significant associations with firmness (P < 0.01), Lab Loin pH, Off Flavor Score and Water Holding Capacity (P < 0.05), and a suggestive effect (P < 0.1) on Flavor Score and Average Glycolytic Potential in a Berkshire x Yorkshire F2 population. The association analyses results agreed with the gene's localization to a QTL region for meat quality traits on porcine chromosome 2p14-17 demonstrated by both linkage mapping and RH mapping. These results provide fundamental evidence for CSRP3 as a functional candidate gene affecting pig meat quality.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-009-9632-1DOI Listing

Publication Analysis

Top Keywords

association analyses
12
meat quality
12
quality traits
8
csrp1 csrp2
8
flavor score
8
analyses
6
porcine
4
porcine csrp3
4
csrp3 polymorphism
4
polymorphism association
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!