A microbial fuel-cell type activity sensor integrated into 500 mL and 3.2 L bioreactors was employed for ampero- (lA) and potentiometric (mV) measurements. The aim was to follow the microbial activity during ethanol production by Saccharomyces cerevisiae and to detect the end of carbohydrate consumption. Three different sensor setups were tested to record electrochemical signals produced by the metabolism of glucose and fructose (1:1) online. In a first setup, a reference electrode was used to record the potentiometric values, which rose from 0.26 to 0.5 V in about 10 h during the growth phase. In a second setup, a combination of ampero- and pseudo-potentiometric measurements delivered a maximum voltage of 35 mV. In this arrangement, the pseudo-potentiometric signal changed in a manner that was directly proportional to the amperometric signals, which reached a maximum value of 32 muA. In a third type of arrangement, a reference electrode was added to the anodic bioreactor compartment to carry out ampero- and potentiometric measurements; this is made possible by the high internal resistance of the cultivation. In this case, the reference potential rose to 0.44 V while the current maximum recorded by the working electrodes reached 27 lA. Reference and pseudo-reference electrodes were in all cases K(3)Fe(CN)(6)/carbon. Electrodes were made of 9 cm(2) woven graphite. To compare the electrochemical signals with established values, the metabolism was also monitored for optical density (at 600 nm) indicating biomass production. For fructose and glucose conversion, HPLC with an Aminex column and RI detector was used, and ethanol production was analyzed by GC with methanol as internal standard. The combination of amperometric and potentiometric recordings was found to be an ideal setup and was successfully used in reproducible cultivations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10295-009-0614-zDOI Listing

Publication Analysis

Top Keywords

activity sensor
8
ampero- potentiometric
8
potentiometric measurements
8
ethanol production
8
electrochemical signals
8
reference electrode
8
online monitoring
4
monitoring yeast
4
yeast cultivation
4
cultivation fuel-cell-type
4

Similar Publications

Spatiotemporal Mapping of Ultrafine Particle Fluxes in an Office HVAC System with a Diffusion Charger Sensor Array.

ACS EST Air

January 2025

Lyles School of Civil & Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States.

Commercial HVAC systems intended to mitigate indoor air pollution are operated based on standards that exclude aerosols with smaller diameters, such as ultrafine particles (UFPs, D ≤ 100 nm), which dominate a large proportion of indoor and outdoor number-based particle size distributions. UFPs generated from occupant activities or infiltrating from the outdoors can be recirculated and accumulate indoors when they are not successfully filtered by an air handling unit. Monitoring UFPs in real occupied environments is vital to understanding these source and mitigation dynamics, but capturing their rapid transience across multiple locations can be challenging due to high-cost instrumentation.

View Article and Find Full Text PDF

Photochromic Sodalites: From Natural Minerals to Advanced Applied Materials.

Acc Chem Res

January 2025

Mineralogical Society of Antwerp, Boterlaarbaan 225, 2100 Deurne, Belgium.

ConspectusWhile photochromic natural sodalites, an aluminosilicate mineral, were originally considered as curiosities, articles published in the past ten years have radically changed this perspective. It has been proven that their artificial synthesis was easy and allowed compositional tuning. Combined with simulations, it has been shown that a wide range of photochromic properties were achievable for synthetic sodalites (color, activation energy, reversibility, etc.

View Article and Find Full Text PDF

The Fraction of Absorbed Photosynthetically Active Radiation (FPAR) is essential for assessing vegetation's photosynthetic efficiency and ecosystem energy balance. While the MODIS FPAR product provides valuable global data, its reliability is compromised by noise, particularly under poor observation conditions like cloud cover. To solve this problem, we developed the Spatio-Temporal Information Composition Algorithm (STICA), which enhances MODIS FPAR by integrating quality control, spatio-temporal correlations, and original FPAR values, resulting in the High-Quality FPAR (HiQ-FPAR) product.

View Article and Find Full Text PDF

A novel method for the rapid determination of phenolic compounds based on the nanozyme with laccase-like activity.

Environ Res

January 2025

Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, P. R. China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun 130021, P. R. China. Electronic address:

Phenolic compounds are prevalent in domestic and industrial effluents, leading a serious environmental hazard. Paper-based analysis device mediated by nanozymes has shown great potential in portable visual determination of phenolic compounds in the environment. In this work, we used nicotinic acid derivatives such as pyridine-2,3-dicarboxylic acid, 2-methylnicotinic acid and 2-aminonicotinic acid by coordinating copper (II) acetate monohydrate coordination to obtain Cu2-COOHNA, Cu2-CHNA, Cu2-ANA nanozymes with laccase-activity.

View Article and Find Full Text PDF

Discovery and characterization of an FAD-dependent glucose 6-dehydrogenase (74 characters including spaces).

J Biol Chem

January 2025

Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan. Electronic address:

Many patients with diabetes use self-measurement devices for blood glucose to understand their blood glucose levels. Most of these devices utilize FAD-dependent glucose dehydrogenase (FAD-GDH) to determine blood glucose levels. For this purpose, FAD-GDHs specifically oxidizing glucose among the sugars present in blood is required.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!