Microtubules (MTs) play an important role in cell division, and their functions are regulated by a set of microtubule-associated proteins (MAPs). Tubulin polymerization promoting protein family member 3 (TPPP3), also known as p20, is a new member of the tubulin polymerization promoting protein (TPPP) family. Previous studies have demonstrated that TPPP3 specifically binds to MTs and positively regulates MTs assembly, which leads to significant ultrastructural alterations of the MTs network. However, the physiological function of TPPP3 is still largely unknown. In the present study, we showed that knockdown of endogenous TPPP3 by RNA interference (RNAi) suppressed cell proliferation and induced cell cycle arrest in HeLa cells. Furthermore, we showed that the depletion of TPPP3 caused mitotic abnormalities, such as the formation of multipolar spindles and chromosome segregation errors, which lead to apoptosis in HeLa cells. Our study suggested that TPPP3 played a crucial role in cell mitosis by regulating centrosomes amplification and/or spindles translocation processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-009-0208-0 | DOI Listing |
PNAS Nexus
January 2025
Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland.
The microtubule cytoskeleton is a dynamic network essential for many cellular processes, influenced by physicochemical factor, such as temperature, pH, dimer concentration, and ionic environment. In this study, we used in vitro reconstitution assays to examine the effects of four monovalent ions (Na, K, Cl, and Ac) on microtubule dynamics, uncovering distinct effects for each ion. Na was found to increase microtubule dynamicity by raising catastrophe frequency, polymerization and depolymerization speeds, and ultimately reducing microtubule lifetime by 80%.
View Article and Find Full Text PDFPLoS Genet
January 2025
Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom.
Bacterial cytokinesis begins with polymerization of the tubulin homologue FtsZ into a ring-like structure at midcell, the Z-ring, which recruits the late cell division proteins that synthesize the division septum. Assembly of FtsZ is carefully regulated and supported by a dozen conserved cell division proteins. Generally, these proteins are not essential, but removing more than one is in many cases lethal.
View Article and Find Full Text PDFNat Commun
January 2025
Cluster of Excellence Physics of Life, TUD Dresden University of Technology, 01062, Dresden, Germany.
Cilia assembly and function rely on the bidirectional transport of components between the cell body and ciliary tip via Intraflagellar Transport (IFT) trains. Anterograde and retrograde IFT trains travel along the B- and A-tubules of microtubule doublets, respectively, ensuring smooth traffic flow. However, the mechanism underlying this segregation remains unclear.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2025
Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India; Inter-University Centre for Evolutionary and Integrative Biology-iCEIB, School of Life Sciences, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India; Sastrajeevan Integrative Project, Centre for Integrative Stress and Ease-cRISE, Gregorian College of Advanced Studies, Sreekariyam, Thiruvananthapuram 695017, Kerala, India. Electronic address:
The cardiac actin cytoskeleton has a dynamic pattern of polymerisation. It is uncertain how far actin destabilisation impacts mitochondrial energetics and biogenesis, cell signal status, and structural entities in cardiomyocytes, particularly in hypoxic conditions. We thus tested the in vitro action of cytochalasin D (Cyt D), an inhibitor of actin polymerisation, in hypoxic ventricular explants to elucidate the role of the actin in mitochondrial energetics and biogenesis, cell signals and actin/tubulin/hsps/MMPs dynamics in hypoxic air-breathing fish hearts.
View Article and Find Full Text PDFRedox Biol
January 2025
Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China. Electronic address:
Oocyte aging is closely related to a decline in female fertility, accompanied by increased reactive oxygen species levels and changes in protein posttranslational modifications. However, the role of protein palmitoylation in oocyte aging has not been investigated. In the present study, a new association between redox and palmitoylation in aging oocytes was found.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!