A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Climate change impacts on activated sludge wastewater treatment: a case study from Norway. | LitMetric

AI Article Synopsis

  • The study investigates how climate change impacts wastewater treatment systems, particularly in Oslo, Norway, focusing on winter operations.
  • Findings reveal that when average daily temperatures rise above -1.5°C, there are significant increases in wastewater influent flow rates due to temporary snow melting.
  • The research indicates that these temperature fluctuations and melting events create shock-conditions that disrupt key wastewater treatment processes, showing a need for improved modeling to predict these effects.

Article Abstract

We present an investigation on climate change effects on a wastewater treatment system that receive sewage collected in a combined sewer system in Oslo, Norway, during winter operation. Results obtained, by contrasting meteorological data with sewage data, show that wastewater treatment plant (WWTP) influent flow rates are significantly increased during temporary snow melting periods above a critical daily air mean temperature of approx. -1.5 degrees C degree (T(Crit)) identified in the area. In order to assess melting patterns, the number of days above and below T(Crit) was assessed, and the annual number of melting periods was additionally evaluated using meteorological data obtained in the last decade. A striking thing about the daily air temperature pattern is that, despite the progressively warmer winter temperatures in the last decade, an increasing number of days with temperatures below -1.5 degrees C could be observed. The frequency of melting periods is shown to increase in wintertime, and it is identified as an additional climate change related factor in the Oslo region. We demonstrate that these impacts can deteriorate the WWTP operation through progressively increasing the relative frequencies of very high influent flow rate and of the very low influent sewage temperature. Such climate change related effects on sewage treatment processes can be characterised as shock-conditions, i.e. significant changes in a system's boundary conditions, occurring in a relatively short period of time. In the six year period examined, biological nitrogen removal and secondary clarification processes are shown to be significantly affected by the climate factors. A striking thing about using the state-of-the-art mathematical models of wastewater treatment processes in decision support systems is their inability of describing, and thus predicting the effects of such shock-loading events, as they have not been studied so far. Adaptation and optimisation of process models, also for use in design, optimisation as well as in real-time automation and process control schemes, are thus critical to meet the challenges of climatic changes in the future.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2009.386DOI Listing

Publication Analysis

Top Keywords

climate change
16
wastewater treatment
16
melting periods
12
change effects
8
meteorological data
8
influent flow
8
daily air
8
air temperature
8
-15 degrees
8
number days
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!