Nitrate regulatory mutants (nrg) of Arabidopsis (Arabidopsis thaliana) were sought using a genetic screen that employed a nitrate-inducible promoter fused to the yellow fluorescent protein marker gene YFP. A mutation was identified that impaired nitrate induction, and it was localized to the nitrate regulatory gene NLP7, demonstrating the validity of this screen. A second, independent mutation (nrg1) mapped to a region containing the NRT1.1 (CHL1) nitrate transporter gene on chromosome 1. Sequence analysis of NRT1.1 in the mutant revealed a nonsense mutation that truncated the NRT1.1 protein at amino acid 301. The nrg1 mutation disrupted nitrate regulation of several endogenous genes as induction of three nitrate-responsive genes (NIA1, NiR, and NRT2.1) was dramatically reduced in roots of the mutant after 2-h treatment using nitrate concentrations from 0.25 to 20 mm. Another nrt1.1 mutant (deletion mutant chl1-5) showed a similar phenotype. The loss of nitrate induction in the two nrt1.1 mutants (nrg1 and chl1-5) was not explained by reduced nitrate uptake and was reversed by nitrogen deprivation. Microarray analysis showed that nitrate induction of 111 genes was reduced and of three genes increased 2-fold or more in the nrg1 mutant. Genes involved in nitrate assimilation, energy metabolism, and pentose-phosphate pathway were most affected. These results strongly support the model that NRT1.1 acts as a nitrate regulator or sensor in Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735993 | PMC |
http://dx.doi.org/10.1104/pp.109.140434 | DOI Listing |
Water Res X
May 2025
School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, 45701, USA; Department of Biological Sciences, Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA. Electronic address:
Biofilms can cause biofouling, water quality deterioration, and transmission of infectious diseases. They are also responsible for microbiologically influenced corrosion (MIC) which can cause leaks, resulting in environmental disasters. A new disposable biofilm/MIC test kit was demonstrated to distinguish abiotic corrosion of carbon steel from MIC.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
Lithium-ion batteries (LIBs) have become advanced energy storage technologies; however, specific capacity remains limited by the active materials in cathodes. Here, we report Li-LiNO batteries (LNBs) where LiNO in electrolyte serves as both active materials and ion conductor at room temperature. LNBs operate on a highly reversible redox between NO and NO, which results in an impressive areal capacity of 19 mAh cm at a plateau voltage of 1.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.
View Article and Find Full Text PDFDiscov Nano
January 2025
Mizan-Tepi University, Tepi, Ethiopia.
Integrating noble metal nanostructures, specifically silver nanoparticles, into sensor designs has proven to enhance sensor performance across key metrics, including response time, stability, and sensitivity. However, a critical gap remains in understanding the unique contributions of various synthesis parameters on these enhancements. This study addresses this gap by examining how factors such as temperature, growth time, and choice of capping agents influence nanostructure shape and size, optimizing sensor performance for diverse conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!