The neuropeptide substance P manifests its biological functions through ligation of a G protein-coupled receptor, the NK1R. Mice with targeted deletion of this receptor reveal a preponderance of proinflammatory properties resulting from ligand activation, demonstrating a neurogenic component to multiple forms of inflammation and injury. We hypothesized that NK1R deficiency would afford a similar protection from inflammation associated with hyperoxia. Counter to our expectations, however, NK1R-/- animals suffered significantly worse lung injury compared with wild-type mice following exposure to 90% oxygen. Median survival was shortened to 84 h for NK1R-/- mice from 120 h for wild-type animals. Infiltration of inflammatory cells into the lungs was significantly increased; NK1R-/- animals also exhibited increased pulmonary edema, hemorrhage, and bronchoalveolar lavage fluid protein levels. TdT-mediated dUTP nick end labeling (TUNEL) staining was significantly elevated in NK1R-/- animals following hyperoxia. Furthermore, induction of metallothionein and Na(+)-K(+)-ATPase was accelerated in NK1R-/- compared with wild-type mice, consistent with increased oxidative injury and edema. In cultured mouse lung epithelial cells in 95% O(2), however, addition of substance P promoted cell death, suggesting the neurogenic component of hyperoxic lung injury is mediated by additional mechanisms in vivo. Release of bioactive constituents including substance P from sensory neurons results from activation of the vanilloid receptor, TRPV1. In mice with targeted deletion of the TRPV1 gene, acute hyperoxic injury is attenuated relative to NK1R-/- animals. Our findings thus reveal a major neurogenic mechanism in acute hyperoxic lung injury and demonstrate concerted actions of sensory neurotransmitters revealing significant protection for NK1R-mediated functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770780PMC
http://dx.doi.org/10.1152/ajplung.90509.2008DOI Listing

Publication Analysis

Top Keywords

lung injury
16
nk1r-/- animals
16
acute hyperoxic
12
hyperoxic lung
12
receptor nk1r
8
mice targeted
8
targeted deletion
8
neurogenic component
8
compared wild-type
8
wild-type mice
8

Similar Publications

Cell-cell crosstalk in the pathogenesis of acute lung injury and acute respiratory distress syndrome.

Tissue Barriers

January 2025

Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China.

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe inflammatory condition of the respiratory system, associated with high morbidity and mortality. This study investigates the therapeutic potential of tocilizumab (TZ), an IL-6 receptor inhibitor, in mitigating lipopolysaccharide (LPS)-induced ALI by modulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. An ALI model was established using LPS induction.

View Article and Find Full Text PDF

Rationale: Preterm infants diagnosed with bronchopulmonary dysplasia (BPD) are thought to have fewer and larger alveoli than their term peers, but it is unclear to what degree this persists later in life.

Objectives: To investigate to what degree the distal airspaces are enlarged in adolescents born preterm and to evaluate the new Airspace Dimension Assessment (AiDA) method in investigating this group.

Methods: We investigated 41 adolescents between 15 and 17 years of age, of whom 25 were born very preterm (a gestational age <31 weeks, with a mean of 26 weeks) and 16 were term-born controls.

View Article and Find Full Text PDF

Predictive Potential of ECMO Blood Flow for Hemolysis and Outcome of Patients with Severe ARDS.

J Clin Med

December 2024

Department of Anesthesiology and Intensive Care Medicine CCM/CVK Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany.

Treatment with veno-venous extracorporeal membrane oxygenation (VV ECMO) has become a frequently considered rescue therapy in patients with severe acute respiratory distress syndrome (ARDS). Hemolysis is a common complication in patients treated with ECMO. Currently, it is unclear whether increased ECMO blood flow (Q̇) contributes to mortality and might be associated with increased hemolysis.

View Article and Find Full Text PDF

While the pulmonary effects of regular waterpipe smoking (R-WPS) are well-defined, the impact of occasional waterpipe smoking (O-WPS) on the lungs remains less established. This study investigated the pulmonary toxicity and underlying mechanisms of O-WPS versus R-WPS following 6 months of exposure, focusing on histopathology, inflammation in the lung, bronchoalveolar lavage fluid (BALF), and plasma, as well as oxidative stress, genotoxicity, mitochondrial dysfunction, and the expression of mitogen-activated protein kinases (MAPKs) in lung homogenates. Exposure to both O-WPS and R-WPS resulted in significant histological changes, including increased numbers of alveolar macrophages and lymphocytes, as well as interstitial fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!