Obesity is a chronic medical condition that is affecting large population throughout the world. CB1 as a target for treatment of obesity has been under intensive studies. Taranabant was discovered and then developed by Merck as the 1st generation CB1R inverse agonist. Reported here is part of our effort on the 2nd generation of CB1R inverse agonist from the acyclic amide scaffold. We replaced the oxygen linker in taranabant with nitrogen and prepared a series of amino heterocyclic analogs through a divergent synthesis. Although in general, the amine linker gave reduced binding affinity, potent and selective CB1R inverse agonist was identified from the amino heterocycle series. Molecular modeling was applied to study the binding of the amino heterocycle series at CB1 binding site. The in vitro metabolism of representative members was studied and only trace glucuronidation was found. Thus, it suggests that the right hand side of the molecule may not be the appropriate site for glucuronidation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2009.07.046DOI Listing

Publication Analysis

Top Keywords

cb1r inverse
16
inverse agonist
12
generation cb1r
8
amino heterocycle
8
heterocycle series
8
synthesis evaluation
4
evaluation n-[1s2s-3-4-chlorophenyl-2-3-cyanophenyl-1-methylpropyl]-2-methyl-2-aminopropanamide
4
n-[1s2s-3-4-chlorophenyl-2-3-cyanophenyl-1-methylpropyl]-2-methyl-2-aminopropanamide human
4
human cannabinoid-1
4
cannabinoid-1 receptor
4

Similar Publications

The design of dualsteric/bitopic receptor ligands as compounds capable of simultaneously interacting with both the orthosteric and an allosteric binding site has gained importance to achieve enhanced receptor specificity and minimize off-target effects. In this work, we reported the synthesis and biological evaluation of a new series of compounds, namely, the series, obtained by chemically combining the CB1R ago-positive allosteric modulators (PAM) with the cannabinoid receptors (CBRs) orthosteric agonist . Therefore, compounds were designed as dualsteric/bitopic ligands for CB1R with the aim of obtaining stronger CB1R agonists or ago-PAMs, with improved receptor subtype selectivity and reduction of central side effects.

View Article and Find Full Text PDF

Cannabinoid receptor-1 (CB1R) signaling in the dorsal striatum regulates the shift from flexible to habitual behavior in instrumental outcome devaluation. Based on prior work establishing individual, sex, and experience-dependent differences in Pavlovian behaviors, we predicted a role for dorsomedial striatum (DMS) CB1R signaling in driving rigid responding in Pavlovian autoshaping and outcome devaluation. We trained male and female Long Evans rats in Pavlovian Lever Autoshaping (PLA).

View Article and Find Full Text PDF

The cannabinoid receptor 1 (CBR) regulates synaptic transmission in the central nervous system, but also has important roles in the peripheral organs controlling cellular metabolism. While earlier generations of brain penetrant CBR antagonists advanced to the clinic for their effective treatment of obesity, such molecules were ultimately shown to exhibit negative effects on central reward pathways that thwarted their further therapeutic development. The peripherally restricted CBR inverse agonists MRI-1867 and MRI-1891 represent a new generation of compounds that retain the metabolic benefits of CBR inhibitors while sparing the negative psychiatric effects.

View Article and Find Full Text PDF

New peripherally-restricted CB1 receptor antagonists, PMG-505-010 and -013 ameliorate obesity-associated NAFLD and fibrosis.

Biomed Pharmacother

November 2024

Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea. Electronic address:

Article Synopsis
  • The study investigates the potential of new compounds PMG-505-010 and PMG-505-013 as peripheral CB1 receptor antagonists aimed at treating obesity and its related complications, specifically non-alcoholic fatty liver disease (NAFLD).
  • These compounds were designed to limit brain exposure by modifying rimonabant, confirmed through physicochemical analysis showing reduced lipophilicity and increased polarity.
  • In experiments, the new antagonists improved metabolic health in obese mice, reversing liver injury and fibrosis while avoiding CNS side effects associated with traditional CB1R antagonists.
View Article and Find Full Text PDF

Background: Defective mitochondria and aberrant brain mitochondrial bioenergetics are consistent features in syndromic intellectual disability disorders, such as Rett syndrome (RTT), a rare neurologic disorder that severely affects mainly females carrying mutations in the X-linked MECP2 gene. A pool of CB1 cannabinoid receptors (CB1R), the primary receptor subtype of the endocannabinoid system in the brain, is located on brain mitochondrial membranes (mtCB1R), where it can locally regulate energy production, synaptic transmission and memory abilities through the inhibition of the intra-mitochondrial protein kinase A (mtPKA). In the present study, we asked whether an overactive mtCB1R-mtPKA signaling might underlie the brain mitochondrial alterations in RTT and whether its modulation by systemic administration of the CB1R inverse agonist rimonabant might improve bioenergetics and cognitive defects in mice modeling RTT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!