This section introduces a simple, rapid, high-throughput methodology for the site-specific biotinylation of proteins for the purpose of fabricating functional protein arrays. Step-by-step protocols are provided to generate biotinylated proteins using in vitro, in vivo, or cell-free systems, together with useful hints for troubleshooting. In vitro and in vivo biotinylation rely on the chemoselective native chemical ligation (NCL) reaction between the reactive alpha-thioester group at the C-terminus of target proteins, generated via intein-mediated cleavage, and the added cysteine biotin. The cell-free system uses a low concentration of biotin-conjugated puromycin. The biotinylated proteins can be either purified or directly captured from crude cellular lysates onto an avidin-functionalized slide to afford the corresponding protein array. The methods were designed to preserve the activity of the immobilized protein such that the arrays provide a highly miniaturized platform to simultaneously interrogate the functional activities of thousands of proteins. This is of paramount significance, as new applications of microarray technologies continue to emerge, fueling their growth as an essential tool for high-throughput proteomic studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0076-6879(09)62010-3 | DOI Listing |
J Neurol
January 2025
Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany.
Background: BDNF has increasingly gained attention as a key molecule controlling remyelination with a prominent role in neuroplasticity and neuroprotection. Still, it remains unclear how BDNF relates to clinicoradiological characteristics particularly at the early stage of the disease where precise prognosis for the further MS course is crucial.
Methods: BDNF, NfL and GFAP concentrations in serum and CSF were assessed in 106 treatment naïve patients with MS (pwMS) as well as 73 patients with other inflammatory/non-inflammatory neurological or somatoform disorders using a single molecule array HD-1 analyser.
Cancer Med
January 2025
Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
Background: Early-stage pancreatic ductal adenocarcinoma (PDAC) is frequently misdiagnosed, contributing to its high mortality rate. Exosomal microRNAs (miRNAs) have emerged as potential biomarkers for the early detection of PDAC.
Aims: This study aimed to evaluate the feasibility of using exosomal miRNAs from PDAC tissues and serum as biomarkers for early detection and prognosis.
Adv Sci (Weinh)
January 2025
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China.
Urinalysis is one of the predominant tools for clinical testing owing to the abundant composition, sufficient volume, and non-invasive acquisition of urine. As a critical component of routine urinalysis, urine protein testing measures the levels and types of proteins, enabling the early diagnosis of diseases. Traditional methods require three separate steps including strip testing, protein/creatinine ratio measurement, and electrophoresis respectively to achieve qualitative, quantitative, and classification analyses of proteins in urine with long time and cumbersome operations.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
Background: Non-small cell lung cancer (NSCLC) is a disease related to inflammation. Proinflammatory cytokines such as interleukin 17 (IL-17) can induce cancer cell proliferation, metastasis and immune escape. Although NSCLC immune escape is partly due to the interaction between PD-1 and PD-L1 and PD-L1 expression can be upregulated in cancer cells upon stimulation with IL-17, the underlying mechanism of IL-17-triggered PD-L1 gene transcription in NSCLC cells remains elusive.
View Article and Find Full Text PDFProtoplasma
January 2025
Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.
Stay-green (SG) and stem reserve mobilization (SRM) are two significant mutually exclusive traits, which contributes to grain-filling during drought and heat stress in wheat. The current research was conducted in a genome-wide association study (GWAS) panel consisting of 278 wheat genotypes of advanced breeding lines to find the markers linked with SG and SRM traits and also to screen the superior genotypes. SG and SRM traits, viz.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!