Medium-chain-length polyhydroxyalkanoates (MCL-PHAs) were produced in carbon-limited, single-stage, fed-batch fermentations of Pseudomonas putida KT2440 by co-feeding nonanoic acid (NA) and glucose (G) to enhance the yield of PHA from NA. An exponential (mu=0.25 h(-1)) followed by a linear feeding strategy at a NA:G ratio of 1:1 (w/w) achieved 71 g l(-1) biomass containing 56% PHA. Although the same overall PHA productivity (1.44 g l(-1) h(-1)) was obtained when NA alone was fed at the same specific growth rate, the overall yield of PHA from NA increased by 25% (0.66 g PHA g NA(-1) versus 0.53 g g(-1)) with glucose co-feeding. Further increasing glucose in the feed (NA:G=1:1.5) resulted in a slightly higher yield (0.69 g PHA g NA(-1)) but lower PHA content (48%) and productivity (1.16 g l(-1) h(-1)). There was very little change in the PHA composition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2009.07.014 | DOI Listing |
Extremophiles
December 2024
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, 1428, Buenos Aires, Argentina.
Polyhydroxyalkanoates (PHAs) are intracellular polymers that enhance bacterial fitness against various environmental stressors. Pseudomonas extremaustralis 14-3b is an Antarctic bacterium capable of accumulating, short-chain-length PHAs (sclPHAs), composed of C3-C5 monomers, as well as medium-chain-length PHAs (mclPHAs) containing ≥ C6 monomers. Since pH changes are pivotal in bacterial physiology, influencing microbial growth and metabolic processes, we propose that accumulated PHA increases P.
View Article and Find Full Text PDFCurr Issues Mol Biol
November 2024
College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are semi-crystalline elastomers with a low melting point and high elongation at break, allowing for a wide range of applications in domestic, agricultural, industrial, and mainly medical fields. Utilizing low-cost cellulose hydrolyzed sugar as a carbon source and metabolic engineering to enhance synthesis in is a promising strategy for commercializing mcl-PHAs, but little has been attempted to improve the utilization of glucose for synthesizing mcl-PHAs. In this study, a multi-pathway modification was performed to improve the utilization of substrate glucose and the synthesis capacity of PHAs.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia. Electronic address:
Plastic pollution presents a significant environmental problem contributing to increased CO emissions and persistently accumulation in ecosystems. Biobased polymers, like polyhydroxyalkanoates (PHAs), offer a part of a solution with their biodegradability and reduced carbon footprint. However, effective end-of-life strategies, such as controlled enzymatic depolymerization, are crucial for sustainability, relying on efficient PHA depolymerases (PHAases).
View Article and Find Full Text PDFBioresour Technol
February 2025
University of Oviedo, Department of Chemical Engineering and Environmental Technology. Julián Clavería 8, Faculty of Chemistry, Oviedo, Spain. Electronic address:
Polyhydroxyalkanoates (PHA) are promising eco-friendly alternatives to petrochemical plastics. This study investigated the impact of the main fatty acids present in waste and fresh oils -palmitic, stearic, oleic, and linoleic acid-on PHA production using Cupriavidus necator H16, focusing on production yield, polymer composition, thermal properties, and microbial viability. Experiments were conducted with low (5 g/L) and high (15 g/L) carbon content for 168 h.
View Article and Find Full Text PDFPolymers (Basel)
October 2024
National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
Poly (3-hydroxybutyrate) (PHB) is a valuable biopolymer that is produced in industrial quantity but is not widely used in applications due to some drawbacks. The addition of cellulose nanofibers (CNF) as a biofiller in PHB/CNF nanocomposites may improve PHB properties and enlarge its application field. In this work, n-octyltriethoxy silane (OTES), a medium-chain-length alkyl silane, was used to surface chemically modify the CNF (CNF_OTES) to enhance their hydrophobicity and improve their compatibility with PHB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!