Thought-controlled neuroprostheses could allow paralyzed patients to interact with the external world using brain waves. Thus far, the fastest and more accurate control of neuroprostheses is achieved through direct recordings of neural activity [Nicolelis, M.A., 2001. Actions from thoughts. Nature 409, 403-407; Donoghue, J.P., 2002. Connecting cortex to machines: recent advances in brain interfaces. Nat. Neurosci. 5 (Suppl.), 1085-1088]. However, invasive recordings have inherent medical risks. Here we discuss some approaches that could enhance the speed and accuracy of non-invasive devices, namely, (1) enlarging the spectral analysis to include higher frequency oscillations, able to transmit substantial information over short analysis windows; (2) using spectral analysis procedures that minimize the variance of the estimates; and (3) transforming EEG recorded activity into local field potential estimates (eLFP). Theoretical and experimental arguments are used to explain why it is erroneous to think that scalp EEG cannot sense high frequency oscillations and how this might hinders further developments. We further illustrate how non-invasive eLFPs derived from the scalp-recorded electroencephalogram (EEG) can be combined with robust, broad band spectral analysis to accurately detect (off-line) the laterality of upcoming hand movements. Interestingly, the use of pattern recognition to select the brain voxels differentially engaged by the explored tasks leads to sound neural activation images. Consequently, our results indicate that both research lines, i.e., neuroprosthetics and electrical neuroimaging, might effectively benefit from their mutual interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphysparis.2009.07.004 | DOI Listing |
Int J Geriatr Psychiatry
January 2025
Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Background: Alzheimer's disease (AD) is characterized by impaired inhibitory circuitry and GABAergic dysfunction, which is associated with reduced fast brain oscillations in the gamma band (γ, 30-90 Hz) in several animal models. Investigating such activity in human patients could lead to the identification of novel biomarkers of diagnostic and prognostic value. The current study aimed to test a multimodal "Perturbation-based" transcranial Alternating Current Stimulation-Electroencephalography (tACS)-EEG protocol to detect how responses to tACS in AD patients correlate with patients' clinical phenotype.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Harvard Medical School, Harvard University, Boston, MA, 02115, USA.
Ultra-broadband photodetectors (UB-PDs) are essential in medical applications, public safety monitoring, and various other fields. However, developing UB-PDs covering multiple bands from ultraviolet to medium infrared remains a challenge due to material limitations. Here, a mixed-dimensional heterojunction composed of 2D WS/monodisperse hexagonal stacking (MHS) 3D PdTe particles on 3D Si is proposed, capable of detecting light from 365 to 9600 nm.
View Article and Find Full Text PDFJ Clin Med
December 2024
The David J Apple Center for Vision Research, Department of Ophthalmology, Heidelberg University Eye Clinic, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
This laboratory study aims to assess the effects of misaligning different trifocal intraocular lenses (IOLs) under varying spectral and corneal spherical aberration (SA) conditions. With an IOL metrology device under monochromatic and polychromatic conditions, the following models were studied: AT ELANA 841P, AT LISA Tri 839MP, FineVision HP POD F, Acrysof IQ PanOptix, and Tecnis Synergy ZFR00V. The SA was simulated using an aberration-free and average-SA cornea.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
: The study exploited, for the first time, Attenuated Total Reflectance-Fourier Transform-InfraRed (ATR-FTIR) spectroscopy on human dental pulps at different timings of root resorption (RR) to deepen the biological mechanisms occurring in deciduous teeth (De) during their replacement with permanent ones. : N:36 dental pulps from sound De were divided into the following: G0 (no RR); G1 (RR less than 1/3 of root length); G2 (RR not exceeding 2/3 of root length); and G3 (RR more than 2/3 of root length). Samples were analyzed by ATR-FTIR, and the spectral data were submitted to univariate (One-way ANOVA and Tukey's multiple comparison tests; statistical significance set at < 0.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva blvd 1, Beer-Sheva 84105, Israel.
Algorithms for detecting point targets in hyperspectral imaging commonly employ the spectral inverse covariance matrix to whiten inherent image noise. Since data cubes often lack stationarity, segmentation appears to be an attractive preprocessing operation. Surprisingly, the literature reports both successful and unsuccessful segmentation cases, with no clear explanations for these divergent outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!