Dysfunction of alsin, particularly its putative Rab5 guanine-nucleotide-exchange factor activity, has been linked to one form of juvenile onset recessive familial amyotrophic lateral sclerosis (ALS2). Multiple lines of alsin knockout (ALS2(-/-)) mice have been generated to model this disease. However, it remains elusive whether the Rab5-dependent endocytosis is altered in ALS2(-/-) neurons. To directly examine the Rab5-mediated endosomal trafficking in ALS2(-/-) neurons, we introduced green fluorescent protein (GFP)-tagged Rab5 into cultured hippocampal neurons to monitor the morphology and motility of Rab5-associated early endosomes. Here we report that Rab5-mediated endocytosis was severely altered in ALS2(-/-) neurons. Excessive accumulation of Rab5-positive vesicles was observed in ALS2(-/-) neurons, which correlated with a significant reduction in endosomal motility and augmentation in endosomal conversion to lysosomes. Consequently, a significant increase in endosome/lysosome-dependent degradation of internalized glutamate receptors was observed in ALS2(-/-) neurons. These phenotypes closely resembled the endosomal trafficking abnormalities induced by a constitutively active form of Rab5 in wild-type neurons. Therefore, our findings reveal a negatively regulatory mechanism of alsin in Rab5-mediated endosomal trafficking, suggesting that enhanced endosomal degradation in ALS2(-/-) neurons may underlie the pathogenesis of motor neuron degeneration in ALS2 and related motor neuron diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2724476PMC
http://dx.doi.org/10.1186/1756-6606-2-23DOI Listing

Publication Analysis

Top Keywords

als2-/- neurons
24
endosomal trafficking
12
endosomal motility
8
amyotrophic lateral
8
lateral sclerosis
8
altered als2-/-
8
neurons
8
rab5-mediated endosomal
8
observed als2-/-
8
motor neuron
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!