Statement Of Problem: Facial prostheses deteriorate in a service environment primary due to exposition to various environmental factors, including sebaceous oils (sebum) and perspiration.
Purpose: This study investigated the physical properties of an experimental, facial prosthetic after immersion for 6 months in simulated sebum, and perspiration at 37 degrees C.
Material And Methods: Chlorinated polyethylene (CPE) specimens were immersed in simulated perspiration as well as in sebum. Compression tests were conducted on a Zwick testing machine. Shore A hardness measurements were carried out in a CV digital Shore A durometer. Melting and glass transition temperatures were evaluated with a differential scanning calorimeter. Weight changes were measured and color changes were determined in the CIE LAB system using a MiniScan XE spectrophotometer. Simple mathematical models were developed to correlate the measured properties with immersion time. The data were also subjected to analyses of variance (ANOVA) and the Tukey multiple range tests at a level of alpha = 0.05.
Results: Specimens immersed in perspiration became harder due to facilitation of the propagation of cross-linking reaction that probably occurred during aging of the CPE samples. Some weight increase was observed for the specimens immersed into the aqueous solutions, whereas for those immersed in sebum, weight loss was recorded, probably because of extraction of some compounds. The color change was higher for the specimens immersed in sebum than that corresponding to simulated perspiration.
Conclusions: The chlorinated polyethylene specimens aged for a period, which simulates 1.5 years of clinical service1, showed significant deformations in their physical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.31482 | DOI Listing |
Eur Arch Paediatr Dent
January 2025
Pediatric Dentistry and Dental Public Health Department.Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
Purpose: Optical properties of recent aesthetic restorative materials must maintain an acceptable appearance throughout their functional lifetime. This study aimed to assess the changes in translucency and colour of recent resin-based restorative materials after exposure to beverages commonly consumed by children.
Methods: An experimental in-vitro study on 48 discs specimens prepared from; Group I: Filtek Z250 XT (Nanohybrid), Group II: Cention N (Alkasite bulkfill), and Group III: SDR flow Plus (Flowable bulkfill).
Am J Dent
December 2024
Department of Biostatistics, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
Purpose: To evaluate the effects of various beverages on surface roughness and microhardness of PEEK and PEKK polymers.
Methods: Rectangular-shaped PEEK and PEKK polymers were fabricated and examined in the study. The specimens were immersed for 28 days at 37°C in red wine, coffee, and distilled water.
Polymers (Basel)
December 2024
Laboratory of Mechanics of Biocompatible Materials and Devices, Perm National Research Polytechnic University, 614990 Perm, Russia.
Bone transplantation ranks second worldwide among tissue prosthesis surgeries. Currently, one of the most promising approaches is regenerative medicine, which involves tissue engineering based on polymer scaffolds with biodegradable properties. Once implanted, scaffolds interact directly with the surrounding tissues and in a fairly aggressive environment, which causes biodegradation of the scaffold material.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Materials Engineering Department, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos 13563-120, SP, Brazil.
The nanosecond pulsed fibre laser (NsPFL) treatment is extensively employed to distinguish hospital surgical instruments (micro-surgical forceps, surgical blades, orthopaedic drills, and high-precision laparoscopic tools), which are generally composed of stainless steel. Nevertheless, if the laser parameters are not properly optimised, this process may unintentionally provoke corrosion. Maintaining the structural integrity of these materials is essential for ensuring patient safety and minimising long-term costs.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.
Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!