The physiological response and sub-cellular localization of lead and cadmium in Iris pseudacorus L.

Ecotoxicology

Institute of Botany, Jiangsu province and Chinese Academy of Science, 210014 Nanjing, Jiangsu, People's Republic of China.

Published: January 2010

The seedling development and physiological responses of Iris pseudacorus L. to Pb and Cd and their combination were studied for 28 days liquid culture and sub-cellular localization of Pb and Cd in the root tip cells treated with 2,070 mg L(-1) Pb and 1,000 mg L(-1)Cd for 16 days sand culture was evaluated. Results showed that the dry weights (DWs) of shoots and roots of I. pseudacorus were significantly decreased at 500 mg L(-1)Pb and 25 mg L(-1)Cd + 500 mg L(-1)Pb treatments and the root DWs under all treatments were significantly decreased in comparison with that of control. The concentrations of Chla in the leaves were decreased at all treatments, while, the concentrations of Chlb and total carotenoids were not significantly decreased under 25 mg L(-1)Cd and 25 mg L(-1)Cd + 500 mg L(-1)Pb treatments. The MDA and proline concentrations and POD activities in the shoots and roots were increased under treatments of 500 mg L(-1)Pb and 25 mg L(-1)Cd + 500 mg L(-1)Pb, but POD activities in the shoots and roots and MDA concentrations in the shoots were significantly decreased at 25 mg L(-1) Cd treatment. The results of sub-cellular localization of Pb and Cd showed that numerous Pb deposits were found on the inner surface of died cell walls in the cortex treated with 2,070 mg L(-1) Pb and Cd deposits were found in the cell wall treated with 1,000 mg L(-1) Cd. Pb and Cd deposits were not found in the cytoplasm. The results indicated that POD and proline showed strong beneficial properties against Pb and Cd stress and there were some mechanisms keeping most cells with normal activities in the plant from Pb toxicity by sacrificing a few cells that accumulated a large amount Pb. Sub-cellular localizations of Pb and Cd in the root tip cells of I. pseudacorus were little difference with the localizations in other species of Iris in the previous studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10646-009-0389-zDOI Listing

Publication Analysis

Top Keywords

500 l-1pb
20
sub-cellular localization
12
shoots roots
12
l-1cd 500
12
iris pseudacorus
8
root cells
8
treated 2070
8
2070 l-1
8
l-1pb l-1cd
8
l-1pb treatments
8

Similar Publications

Mismatched electron and proton transport rates impede the manifestation of effective performance of the electrocatalytic oxygen evolution reaction (OER), thereby limiting its industrial applications. Inspired by the natural protein cluster in PS-II, different organic-inorganic hybrid electrocatalysts were synthesized via a hydrothermal method. -Toluidine (PT), benzoic acid (BA), and -aminobenzoic acid (PABA) were successfully intercalated into NiFe-LDH.

View Article and Find Full Text PDF

Background: To investigate the effect of Midnight-noon Ebb-flow combined with five-element music therapy in the continuous nursing of patients with chronic wounds.

Methods: From March 2022 to November 2023, we recruited 50 eligible chronic wound patients and randomly divided them into two groups according to a random number table: the experimental group (n = 25) and the control group (n = 25). The control group was treated with conventional nursing measures.

View Article and Find Full Text PDF

Annually, thousands of individuals suffer from skin injuries resulting from trauma, surgeries, or diabetes. Inadequate wound treatment can delay healing and increase the risk of severe infections. In this context, a promising synthetic polymer with potent antimicrobial properties, Poly{2-[(methacryloyloxy)ethyl]trimethylammonium chloride} (PMETAC), is synthesized and crosslinked with N,N'-Methylenebis(acrylamide) (BIS) in the presence of Chitosan (CH), a natural, biocompatible polysaccharide that promotes cell regeneration and provides additional beneficial properties.

View Article and Find Full Text PDF

Microbial activity in the deep continental subsurface is difficult to measure due to low cell densities, low energy fluxes, cryptic elemental cycles and enigmatic metabolisms. Nonetheless, direct access to rare sample sites and sensitive laboratory measurements can be used to better understand the variables that govern microbial life underground. In this study, we sampled fluids from six boreholes at depths ranging from 244 m to 1,478 m below ground at the Sanford Underground Research Facility (SURF), a former goldmine in South Dakota, United States.

View Article and Find Full Text PDF

This study aimed at quantifying the potential effects of plant and soil microbial interaction on selenium (Se) volatilization, with the specific objectives of identifying soil bacteria associated with rabbitfoot grass () and demonstrating the enhancement of Se volatilization in the soil-Indian mustard () system through inoculation of the soil with the identified best Se-volatilizing bacterial strain. Soil bacteria were isolated from topsoil and rhizosphere soils of rabbitfoot grass, and the bacterial colonies were characterized via PCR-DGGE and DGGE band analysis prior to their identification using 16S rDNA sequencing technique. produced over 500-fold more volatile Se in a culture medium treated with 15 µg Se/mL (equal mixture of SeO , SeO and selenomethionine) than any of the other eight identified bacterial strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!