The evolution of multiple antibiotic resistance is an increasing global problem. Resistance mutations are known to impair fitness, and the evolution of resistance to multiple drugs depends both on their costs individually and on how they interact--epistasis. Information on the level of epistasis between antibiotic resistance mutations is of key importance to understanding epistasis amongst deleterious alleles, a key theoretical question, and to improving public health measures. Here we show that in an antibiotic-free environment the cost of multiple resistance is smaller than expected, a signature of pervasive positive epistasis among alleles that confer resistance to antibiotics. Competition assays reveal that the cost of resistance to a given antibiotic is dependent on the presence of resistance alleles for other antibiotics. Surprisingly we find that a significant fraction of resistant mutations can be beneficial in certain resistant genetic backgrounds, that some double resistances entail no measurable cost, and that some allelic combinations are hotspots for rapid compensation. These results provide additional insight as to why multi-resistant bacteria are so prevalent and reveal an extra layer of complexity on epistatic patterns previously unrecognized, since it is hidden in genome-wide studies of genetic interactions using gene knockouts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706973 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1000578 | DOI Listing |
Dalton Trans
March 2025
Institute of Flow Chemistry and Engineering, School of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China.
Platinum-based chemotherapy, despite being a cornerstone of cancer treatment, faces significant challenges due to acquired drug resistance. To address this issue, we have designed three organelle-targeting platinum(IV) prodrugs conjugated with BODIPY fluorophores, enabling spatiotemporal control through green light irradiation. These BODIPY-Pt(IV) conjugates exhibit excellent stability in PBS buffer, demonstrating resilience under physiological conditions.
View Article and Find Full Text PDFInfect Control Hosp Epidemiol
March 2025
Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
Objective: Evaluate Department of Defense (DoD) antimicrobial stewardship programs (ASPs) by assessing the relationship between key clinical outcome metrics (antibiotic use, incidence of resistant pathogens, and incidence of infections) and CDC Core Element (CE) adherence.
Design: Retrospective, cross-sectional study of DoD hospitals in 2018 and 2021.
Methods: National Healthcare Safety Network Standardized Antimicrobial Administration Ratios (SAARs) were used to measure antibiotic use and microbiology results to evaluate four types of pathogen incidence.
FASEB J
March 2025
Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China.
Breast cancer (BC) is one of the most common malignant tumors among women, accounting for 24.5% of all cancer cases and leading to 15.5% of cancer-related mortality.
View Article and Find Full Text PDFJ Biomol Struct Dyn
March 2025
Applied Organic Chemistry Department, National Research Center, Dokki, Egypt.
The discovery of novel, selective inhibitors targeting CDK2 and PIM1 kinases, which regulate cell survival, proliferation, and treatment resistance, is crucial for advancing cancer therapy. This study reports the design, synthesis, and biological evaluation of three novel pyrazolo[3,4-]pyridine derivatives (), confirmed spectral analyses. These compounds were assessed for anti-cancer activity against breast, colon, liver, and cervical cancers using the MTT assay.
View Article and Find Full Text PDFEnviron Technol
March 2025
Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China.
The structural and abundance changes in water disinfected by tea polyphenols were investigated in high-abundance microbial communities (HAMC), medium-abundance microbial communities (MAMC), and low-abundance microbial communities (LAMC), also included the interactions within and between these communities. The antibacterial effect of tea polyphenols was observed at concentrations of 20-300 mg/L. If the tea polyphenols concentration is greater than or equal to 200 mg/L, it can continue to inhibit the growth of bacteria, and keep the total number of bacteria in 48 hours no more than100 CFU/ml, and this reflected the continuity of tea polyphenols disinfectant in the pipe network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!