Inhibition of RhoA signaling with increased Bves in trabecular meshwork cells.

Invest Ophthalmol Vis Sci

Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, USA.

Published: January 2010

Purpose: Blood vessel epicardial substance (Bves) is a novel adhesion molecule that regulates tight junction (TJ) formation. TJs also modulate RhoA signaling, which has been implicated in outflow regulation. Given that Bves has been reported in multiple ocular tissues, the authors hypothesize that Bves plays a role in the regulation of RhoA signaling in trabecular meshwork (TM) cells.

Methods: Human TM cell lines NTM-5 and NTM-5 transfected to overexpress Bves (NTM-w) were evaluated for TJ formation, and levels of occludin, cingulin, and ZO-1 protein were compared. Assays of TJ function were carried out using diffusion of sodium fluorescein and transcellular electrical resistance (TER). Levels of activated RhoA were measured using FRET probes, and phosphorylation of myosin light chain (MLC-p), a downstream target of RhoA, was assessed by Western blot analysis.

Results: Overexpression of Bves led to increased TJ formation in NTM-5 cells. Increased TJ formation was confirmed by increased occludin, cingulin, and ZO-1 protein. Functionally, NTM-w cells showed decreased permeability and increased TER compared with NTM-5 cells, consistent with increased TJ formation. NTM-w cells also exhibited decreased levels of active RhoA and lower levels of MLC-p than did NTM-5 cells. These findings support a TJ role in RhoA signaling.

Conclusions: Increased Bves in TM cells leads to increased TJ formation with decreased RhoA activation and decreased MLC-p. This is the first report of a regulatory pathway upstream of RhoA in TM cells. In TM tissue, RhoA has been implicated in outflow regulation; thus, Bves may be a key regulatory molecule in aqueous outflow.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857412PMC
http://dx.doi.org/10.1167/iovs.09-3539DOI Listing

Publication Analysis

Top Keywords

increased formation
16
rhoa signaling
12
ntm-5 cells
12
rhoa
9
increased
8
bves
8
increased bves
8
trabecular meshwork
8
cells
8
implicated outflow
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!