Addressing the issue of effective connectivity, this study focuses on effects of indirect connections on inferring stable causal relations: partial transfer entropy. We introduce a Granger causality measure based on a multivariate version of transfer entropy. The statistic takes into account the influence of the rest of the network (environment) on observed coupling between two given nodes. This formalism allows us to quantify, for a specific pathway, the total amount of indirect coupling mediated by the environment. We show that partial transfer entropy is a more sensitive technique to identify robust causal relations than its bivariate equivalent. In addition, we demonstrate the confounding effects of the variation in indirect coupling on the detectability of robust causal links. Finally, we consider the problem of model misspecification and its effect on the robustness of the observed connectivity patterns, showing that misspecifying the model may be an issue even for model-free information-theoretic approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2009.07.014DOI Listing

Publication Analysis

Top Keywords

transfer entropy
12
confounding effects
8
effects indirect
8
indirect connections
8
causal relations
8
partial transfer
8
indirect coupling
8
robust causal
8
indirect
4
connections causality
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!