When a two-headed molecular motor such as kinesin is attached to its track by just a single head in the presence of an applied load, thermally activated head detachment followed by rapid re-attachment at another binding site can cause the motor to 'hop' backwards. Such hopping, on its own, would produce a linear force-velocity relation. However, for kinesin, we must incorporate hopping into the motor's alternating-head scheme, where we expect it to be most important for the state prior to neck-linker docking. We show that hopping can account for the backward steps, run length and stalling of conventional kinesin. In particular, although hopping does not hydrolyse ATP, we find that the hopping rate obeys the same Michaelis-Menten relation as the ATP hydrolysis rate. Hopping can also account for the reduced processivity observed in kinesins with mutations in their tubulin-binding loop. Indeed, it may provide a general mechanism for the breakdown of perfect processivity in two-headed molecular motors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2009.07.011 | DOI Listing |
Hereditas
January 2025
Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education & Key Laboratory of Human Reproductive Medicine and Genetic Research of Hainan Provincie & Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.
Background: The dynein cytoplasmic two heavy chain 1 (DYNC2H1) gene encodes a cytoplasmic dynein subunit. Cytoplasmic dyneins transport cargo towards the minus end of microtubules and are thus termed the "retrograde" cellular motor. Mutations in DYNC2H1 are the main causative mutations of short rib-thoracic dysplasia syndrome type III with or without polydactyly (SRTD3).
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
Colloidal nanocrystals inherently undergo structural changes during chemical reactions. The robust structure-property relationships, originating from their nanoscale dimensions, underscore the significance of comprehending the dynamic structural behavior of nanocrystals in reactive chemical media. Moreover, the complexity and heterogeneity inherent in their atomic structures require tracking of structural transitions in individual nanocrystals at three-dimensional (3D) atomic resolution.
View Article and Find Full Text PDFPsychiatr Clin North Am
March 2025
Department of Psychiatry and Yale Child Study Center, Yale School of Medicine, 230 South Frontage Road, New Haven, CT 06520, USA. Electronic address:
This review explores the genetic basis of Tourette syndrome (TS), a complex neuropsychiatric disorder characterized by motor and vocal tics. Family, twin, and molecular genetic studies provide strong evidence for a genetic component in TS, with heritability estimates ranging from 50% to 80%. The genetic architecture of TS is complex, involving both common variants with small effects and rare variants with larger effects.
View Article and Find Full Text PDFAdv Drug Deliv Rev
January 2025
Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel; Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel.
Self-renewal capacity and potential to differentiate into almost any cell type of the human body makes pluripotent stem cells a valuable starting material for manufacturing of clinical grade cell therapies. Neurodegenerative diseases are characterized by gradual loss of structure or function of neurons, often leading to neuronal death. This results in gradual decline of cognitive, motor, and physiological functions due to the degeneration of the central nervous systems.
View Article and Find Full Text PDFExp Gerontol
January 2025
School of Food and Bioengineering, Xihua University, Chengdu 610039, China.
Purpose: The study aims to investigate the therapeutic effects of the aqueous extract of Atractylodes macrocephala Koidz. (AEA) on dexamethasone (Dex) -induced sarcopenia in mice and to explore its possible mechanisms of action.
Methods: This study utilized bioinformatics analysis to explore the primary pathogenic mechanisms of age-related sarcopenia and Dex-induced muscle atrophy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!