Highly efficient and enantioselective biotransformations of racemic azetidine-2-carbonitriles and their synthetic applications.

J Org Chem

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Published: August 2009

Catalyzed by the Rhodococcus erythropolis AJ270 whole cell catalyst in neutral aqueous buffer at 30 degrees C, a number of racemic 1-benzylazetidine-2-carbonitriles, trans-1-benzyl-4-methylazetidine-2-carbonitrile, and 1-benzyl-2-methylazetidine-2-carbonitrile and their amide substrates underwent efficient and enantioselective biotransformations to afford the corresponding azetidine-2-carboxylic acids and their amide derivatives in excellent yields with ee up to >99.5%. The overall excellent enantioselectivity of the biocatalytic reactions stemmed from a combined effect of a very active but virtually nonenantioselective nitrile hydratase and a high R-enantioselective amidase involved in microbial whole cells. The synthetic applications have been demonstrated by the nucleophilic ring-opening reactions of azetidiniums of the resulting chiral azetidine-2-carbox amide derivatives for the preparation of alpha,gamma-diamino, alpha-phenoxy-gamma-amino, and alpha-cyano-gamma-amino carboxamides. The intramolecular CuI-catalyzed cross-coupling reaction for the synthesis of azetidine-fused 1,4-benzodiazepin-2-one derivative was also presented.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo9011656DOI Listing

Publication Analysis

Top Keywords

efficient enantioselective
8
enantioselective biotransformations
8
synthetic applications
8
amide derivatives
8
highly efficient
4
biotransformations racemic
4
racemic azetidine-2-carbonitriles
4
azetidine-2-carbonitriles synthetic
4
applications catalyzed
4
catalyzed rhodococcus
4

Similar Publications

Catalytic asymmetric C-N cross-coupling towards boron-stereogenic 3-amino-BODIPYs.

Nat Commun

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China.

3-Amino boron dipyrromethenes (BODIPYs) are a versatile class of fluorophores widely utilized in live cell imaging, photodynamic therapy, and fluorescent materials science. Despite the growing demand for optically active BODIPYs, the synthesis of chiral 3-amino-BODIPYs, particularly the catalytic asymmetric version, remains a challenge. Herein, we report the synthesis of boron-stereogenic 3-amino-BODIPYs via a palladium-catalyzed desymmetric C-N cross-coupling of prochiral 3,5-dihalogen-BODIPYs.

View Article and Find Full Text PDF

Photoredox/Nickel Dual-Catalytic Asymmetric Silylarylation of Alkenes.

Org Lett

January 2025

Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China.

The efficient construction of chiral aryl-containing organosilicon frameworks via catalytic enantioselective three-component silylarylation of alkenes remains a great challenge. Herein, a photoredox/nickel dual-catalytic asymmetric protocol has been disclosed by using a chiral biimidazoline (BiIM) as the ligand, silylboranes as the silyl radical precursors, aryl bromides as the coupling partners, and morpholine as the promoter. Remarkably, the reaction features mild and green conditions, high reaction efficiency, and excellent enantioselectivity, enabling the facile synthesis of valuable chiral tropic acid and sila-isoflavanone structures.

View Article and Find Full Text PDF

Ionic liquid (IL) units in heterogeneous catalysts exhibit synergistic effects to enhance catalytic performance and stabilize catalytically active centers, while also preventing the degradation of catalysts during the reaction process. Ionic liquid units in IL-functionalized CMOF catalysts enhance their catalytic performance in a synergistic manner. However, not only are the yields of IL-functionalized CMOFs obtained with post-synthesis methods low, but they also lead to blocking of the MOF pores and leaching of the ionic liquid.

View Article and Find Full Text PDF

Chemodivergent, enantio- and regioselective couplings of alkynes, aldehydes and silanes enabled by nickel/N-heterocyclic carbene catalysis.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:

Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.

View Article and Find Full Text PDF

This study presents a copper-catalyzed, substrate-controlled regio- and enantioselective intermolecular hydrosilylation method capable of accommodating a broad scope of alkenes and prochiral silanes. The approach offers an efficient and versatile pathway to generate enantioenriched linear and branched alkyl-substituted Si-stereogenic silanes. Key features of this reaction include mild reaction conditions, simple catalytic systems, compatibility with diverse substrates, high yields and enantioselectivities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!