This article describes the microstructure and dynamics in the solid state of polyfluorene-based polymers, poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO), a semicrystalline polymer, and poly[(9,9-dioctyl-2,7-divinylene-fluorenylene)-alt-co-{2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene}, a copolymer with mesomorphic phase properties. These structures were determined by wide-angle X-ray scattering (WAXS) measurements. Assuming a packing model for the copolymer structure, where the planes of the phenyl rings are stacked and separated by an average distance of approximately 4.5 A and laterally spaced by about approximately 16 A, we followed the evolution of these distances as a function of temperature using WAXS and associated the changes observed to the polymer relaxation processes identified by dynamical mechanical thermal analysis. Specific molecular motions were studied by solid-state nuclear magnetic resonance. The onset of the side-chain motion at about 213 K (beta-relaxation) produced a small increase in the lateral spacing and in the stacking distance of the phenyl rings in the aggregated structures. Besides, at about 383 K (alpha-relaxation) there occurs a significant increase in the amplitude of the torsion motion in the backbone, producing a greater increase in the stacking distance of the phenyl rings. Similar results were observed in the semicrystalline phase of PFO, but in this case the presence of the crystalline structure affects considerably the overall dynamics, which tends to be more hindered. Put together, our data explain many features of the temperature dependence of the photoluminescence of these two polymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp9043368 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!