Fast and accurate automatic structure prediction with HHpred.

Proteins

Gene Center and Center for Integrated Protein Science (Munich), Ludwig-Maximilians-University Munich, 81377 Munich, Germany.

Published: January 2010

Automated protein structure prediction is becoming a mainstream tool for biological research. This has been fueled by steady improvements of publicly available automated servers over the last decade, in particular their ability to build good homology models for an increasing number of targets by reliably detecting and aligning more and more remotely homologous templates. Here, we describe the three fully automated versions of the HHpred server that participated in the community-wide blind protein structure prediction competition CASP8. What makes HHpred unique is the combination of usability, short response times (typically under 15 min) and a model accuracy that is competitive with those of the best servers in CASP8.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.22499DOI Listing

Publication Analysis

Top Keywords

structure prediction
12
protein structure
8
fast accurate
4
accurate automatic
4
automatic structure
4
prediction hhpred
4
hhpred automated
4
automated protein
4
prediction mainstream
4
mainstream tool
4

Similar Publications

Background: Superagers, older adults with exceptional cognitive abilities, show preserved brain structure compared to typical older adults. We investigated whether superagers have biologically younger brains based on their structural integrity.

Methods: A cohort of 153 older adults (aged 61-93) was recruited, with 63 classified as superagers based on superior episodic memory and 90 as typical older adults, of whom 64 were followed up after two years.

View Article and Find Full Text PDF

We introduce EmoAtlas, a computational library/framework extracting emotions and syntactic/semantic word associations from texts. EmoAtlas combines interpretable artificial intelligence (AI) for syntactic parsing in 18 languages and psychologically validated lexicons for detecting the eight emotions in Plutchik's theory. We show that EmoAtlas can match or surpass transformer-based natural language processing techniques, BERT or large language models like ChatGPT 3.

View Article and Find Full Text PDF

MAI-TargetFisher: A proteome-wide drug target prediction method synergetically enhanced by artificial intelligence and physical modeling.

Acta Pharmacol Sin

January 2025

Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.

Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantially. This progress inspired the development of the first genome-wide small molecule targets scanning method.

View Article and Find Full Text PDF

The failure of locked-segment landslides is associated with the destruction of locked segments that exhibit an energy accumulation effect. Thus, understanding their failure mode and instability mechanism for landslide hazard prevention and control is critical. In this paper, multiple instruments, such as tilt sensors, pore water pressure gauges, moisture sensors, matrix suction sensors, resistance strain gauges, miniature earth pressure sensors, a three-dimensional (3D) laser scanner, and a camera, were used to conduct the physical model tests on the rainfall-induced arch locked-segment landslide to analyze the resulting tilting deformation and evolution mechanism.

View Article and Find Full Text PDF

Aspect category sentiment analysis based on pre-trained BiLSTM and syntax-aware graph attention network.

Sci Rep

January 2025

Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing, 100081, China.

Aspect Category Sentiment Analysis (ACSA) is a fine-grained sentiment analysis task aimed at predicting the sentiment polarity associated with aspect categories within a sentence.Most existing ACSA methods are based on a given aspect category to locate sentiment words related to it. When irrelevant sentiment words have semantic meaning for the given aspect category, it may cause the problem that sentiment words cannot be matched with aspect categories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!