The effects of surfactants addition on enzymatic hydrolysis and subsequent fermentation of steam exploded lodgepole pine (SELP) and ethanol pretreated lodgepole pine (EPLP) were investigated in this study. Supplementing Tween 80 during cellulase hydrolysis of SELP resulted in a 32% increase in the cellulose-to-glucose yield. However, little improvement was obtained from hydrolyzing EPLP in the presence of the same amount of surfactant. The positive effect of surfactants on SELP hydrolysis led to an increase in final ethanol yield after the fermentation. It was found that the addition of surfactant led to a substantial increase in the amount of free enzymes in the 48 h hydrolysates derived from both substrates. The effect of surfactant addition on final ethanol yield of simultaneous saccharification and fermentation (SSF) was also investigated by using SELP in the presence of additional furfural and hydroxymethylfurfural (HMF). The results showed that the surfactants slightly increased the conversion rates of furfural and HMF during SSF process by Saccharomyces cerevisiae. The presence of furfural and HMF at the experimental concentrations did not affect the final ethanol concentration either. The strategy of applying surfactants in cellulase recycling to reduce enzyme cost is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/btpr.198 | DOI Listing |
Insects
January 2025
Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada.
Subcortical beetle communities interact with a wide range of semiochemicals released from different sources, including trees, fungi, and bark beetle pheromones. While the attraction of bark beetles, their insect predators, and competitors to bark beetle pheromones is commonly studied, the attraction of these beetle communities to other sources of semiochemicals remains poorly understood. We tested the attraction of bark and wood-boring beetles and their predators to host stress volatiles, fungal volatiles, and a mountain pine beetle lure in the field.
View Article and Find Full Text PDFEvol Lett
December 2024
Department of Forest and Conservation Science, Faculty of Forestry, University of British Columbia, Vancouver, V6T 1Z4, Canada.
Environmental heterogeneity can lead to spatially varying selection, which can, in turn, lead to local adaptation. Population genetic models have shown that the pattern of environmental variation in space can strongly influence the evolution of local adaptation. In particular, when environmental variation is highly autocorrelated in space local adaptation will more readily evolve.
View Article and Find Full Text PDFPLoS One
November 2024
Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada.
Climate change has significantly impacted the wildfire regimes in lodgepole pine forests, resulting in prolonged fire seasons and altered fire behaviour. In North America, fire patterns have shifted towards more frequent and severe wildfires after a century of fire suppression. In response, silviculture practices in fire-prone areas should aim to restore diverse forest structures that are resistant or resilient to wildfires.
View Article and Find Full Text PDFEur J For Res
May 2024
Department of Renewable Resources, University of Alberta, 442 Earth Science Buildings, Edmonton, AB T6G 2E3 Canada.
Growth and yield (G&Y) of forest plantations can be significantly impacted by maladaptation resulting from climate change, and assisted migration has been proposed to mitigate these impacts by restoring populations to their historic climates. However, genecology models currently used for guiding assisted migration do not account for impacts of climate change on cumulative growth and assume that responses of forest population to climate do not change with age. Using provenance trial data for interior lodgepole pine ( subsp.
View Article and Find Full Text PDFMetabolites
August 2024
Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada.
The recent mountain pine beetle outbreaks have caused widespread mortality among lodgepole pine trees in western North America, resulting in a reduced population of surviving trees. While previous studies have focused on the cascading impacts of these outbreaks on the physiology and growth of the surviving trees, there remains a need for a comprehensive study into the interactions among various physiological traits and the growth in post-outbreak stands. Specifically, the relationship between chemical (primarily terpenes) and anatomical (mainly resin ducts) defences, as well as the allocation of non-structural carbohydrates (NSCs) to support these defence modalities, is poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!