Coexposure of hypothalamo-neurohypophyseal system explants to ATP and phenylephrine [PE; an alpha1-adrenergic receptor (alpha1-AR) agonist] induces an extended elevation in vasopressin and oxytocin (VP/OT) release. New evidence is presented that this extended response is mediated by recruitment of desensitization-resistant ionotropic purinergic receptor subtypes (P2X-Rs): 1) Antagonists of the P2X2/3 and P2X7-Rs truncated the sustained VP/OT release induced by ATP+PE but did not alter the transient response to ATP alone. 2) The P2X2/3 and P2X7-R antagonists did not alter either ATP or ATP+PE-induced increases in [Ca(2+)](i). 3) P2X2/3 and P2X7-R agonists failed to elevate [Ca(2+)](i), while ATP-gamma-S, an agonist for P2X2-Rs increased [Ca(2+)](i) and induced a transient increase in VP/OT release. 4) A P2Y1-R antagonist did not prevent initiation of the synergistic, sustained stimulation of VP/OT release by ATP+PE but did reduce its duration. Thus, the desensitization-resistant P2X2/3 and P2X7-R subtypes are required for the sustained, synergistic hormone response to ATP+PE, while P2X2-Rs are responsible for the initial activation of Ca(2+)-influx by ATP and ATP stimulation of VP/OT release. Immunohistochemistry, coimmunoprecipitation, and Western blot analysis confirmed the presence of P2X2 and P2X3, P2X2/3, and P2X7-R protein, respectively in SON. These findings support the hypothesis that concurrent activation of P2X2-R and alpha1-AR induces calcium-driven recruitment of P2X2/3 and 7-Rs, allowing sustained activation of a homeostatic circuit. Recruitment of these receptors may provide sustained release of VP during dehydration and may be important for preventing hemorrhagic and septic shock.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763823PMC
http://dx.doi.org/10.1152/ajpregu.00358.2009DOI Listing

Publication Analysis

Top Keywords

vp/ot release
20
p2x2/3 p2x7-r
16
sustained stimulation
8
vasopressin oxytocin
8
atp phenylephrine
8
recruitment desensitization-resistant
8
stimulation vp/ot
8
release
7
sustained
6
atp
6

Similar Publications

Corticosteroid-binding globulin CBG is expressed in magnocellular hypothalamic nuclei, in part colocalized with vasopressin (VP) and oxytocin (OT). Here we subjected intact adult male rats to chronic osmotic stress to determine effects on distribution of CBG in VP and OT neurons and in neurons expressing corticotropin- releasing hormone (CRH). Drinking 2% NaCl solution for seven days resulted in increased CBG-immunoreactivity in magnocellular neurons.

View Article and Find Full Text PDF

Vasopressin-oxytocin (VP-OT) nonapeptides modulate numerous social and stress-related behaviors, yet these peptides are made in multiple nuclei and brain regions (e.g., >20 in some mammals), and VP-OT cells in these areas often exhibit overlapping axonal projections.

View Article and Find Full Text PDF

Vertebrate species from fish to humans engage in a complex set of preparatory behaviors referred to as nesting; yet despite its phylogenetic ubiquity, the physiological and neural mechanisms that underlie nesting are not well known. We here test the hypothesis that nesting behavior is influenced by the vasopressin-oxytocin (VP-OT) peptides, based upon the roles they play in parental behavior in mammals. We quantified nesting behavior in male and female zebra finches following both peripheral and central administrations of OT and V1a receptor (OTR and V1aR, respectively) antagonists.

View Article and Find Full Text PDF

Regional expression of P2Y(4) receptors in the rat central nervous system.

Purinergic Signal

December 2011

Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China.

P2Y receptors are G protein-coupled receptors composed of eight known subunits (P2Y(1, 2, 4, 6, 11, 12, 13, 14)), which are involved in different functions in neural tissue. The present study investigates the expression pattern of P2Y(4) receptors in the rat central nervous system (CNS) using immunohistochemistry and in situ hybridization. The specificity of the immunostaining has been verified by preabsorption, Western blot, and combined use of immunohistochemistry and in situ hybridization.

View Article and Find Full Text PDF

Multiple alpha1-adrenergic receptor subtypes support synergistic stimulation of vasopressin and oxytocin release by ATP and phenylephrine.

Am J Physiol Regul Integr Comp Physiol

December 2010

Dept. of Physiology and Biophysics, Univ. of Colorado, School of Medicine, 12800 E. 19 Ave, Aurora, CO 80045, USA.

Simultaneous exposure of explants of the hypothalamo-neurohypophyseal system (HNS) to ATP and the α(1)-adrenergic receptor (α(1)-R) agonist, phenylephrine (ATP+PE) induces a synergistic stimulation of vasopressin and oxytocin (VP/OT) release that is sustained for hours. The current studies confirm that the synergism is dependent upon activation of α(1)-R by demonstrating that an α(1)-R antagonist prevents the response. The role of the α(1)A, B, and D-adrenergic receptor subtypes in the synergistic effect of ATP+PE on intracellular calcium ([Ca(2+)](i)) in supraoptic nucleus (SON) neurons and VP/OT release from neural lobe was evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!