Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO(2)]) and elevated ozone concentration ([O(3)]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO(2)] and [O(3)] predicted for approximately 2050. The responses of two clones were compared during the first month of spring leaf out when CO(2) fumigation had begun, but O(3) fumigation had not. Trees in elevated [CO(2)] plots showed a stimulation of leaf area index (36%), while trees in elevated [O(3)] plots had lower leaf area index (-20%). While individual leaf area was not significantly affected by elevated [CO(2)], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO(2)]; however, the two clones responded differently to long-term growth at elevated [O(3)]. The O(3)-sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O(3)] (-32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O(3)] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O(3)], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2009.07.004DOI Listing

Publication Analysis

Top Keywords

leaf area
24
elevated [o3]
20
spring leaf
16
long-term growth
12
elevated
12
growth elevated
12
elevated [co2]
12
leaf
9
leaf flush
8
populus tremuloides
8

Similar Publications

Anatomical characterization of Semi-arid Bignoniaceae using light and scanning electron microscopy.

BMC Plant Biol

January 2025

Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia.

Background: The present research work was done to evaluate the anatomical differences among selected species of the family Bignoniaceae, as limited anatomical data is available for this family in Pakistan. Bignoniaceae is a remarkable family for its various medicinal properties and anatomical characterization is an important feature for the identification and classification of plants.

Methodology: In this study, several anatomical structures were examined, including stomata type and shape, leaf epidermis shape, epidermal cell size, and the presence or absence of trichomes and crystals (e.

View Article and Find Full Text PDF

Several recent investigations into montane regions have reported on excess mercury accumulation in high-altitude forest ecosystems. This study explored the Singalila National Park, located on the Singalila ridge of the Eastern Himalayas, revealing substantial mercury contamination. Particular focus was on Sandakphu (3636 m), the highest peak in West Bengal, India.

View Article and Find Full Text PDF

Indian agriculture is vital sector in the country's economy, providing employment and sustenance to millions of farmers. However, Plant diseases are a serious risk to crop yields and farmers' livelihoods. Traditional plant disease diagnosis methods rely heavily on human expertise, which can lead to inaccuracies due to the invisible nature of early disease symptoms and the labor-intensive process, making them inefficient for large-scale agricultural management.

View Article and Find Full Text PDF

Convergent evidence for the temperature-dependent emergence of silicification in terrestrial plants.

Nat Commun

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

Research on silicon (Si) biogeochemistry and its beneficial effects for plants has received significant attention over several decades, but the reasons for the emergence of high-Si plants remain unclear. Here, we combine experimentation, field studies and analysis of existing databases to test the role of temperature on the expression and emergence of silicification in terrestrial plants. We first show that Si is beneficial for rice under high temperature (40 °C), but harmful under low temperature (0 °C), whilst a 2 °C increase results in a 37% increase in leaf Si concentrations.

View Article and Find Full Text PDF

LG1 promotes preligule band formation through directly activating ZmPIN1 genes in maize.

J Genet Genomics

January 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China. Electronic address:

Increasing plant density is an effective strategy for enhancing crop yield per unit land area. A key architectural trait for crops adapting to high planting density is smaller leaf angle (LA). Previous studies have demonstrated that LG1, a SQUAMOSA BINDING PROTEIN (SBP) transcription factor, plays a critical role in LA establishment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!