Purpose: TRAIL, an endogenous protein involved in immunosurveillance and a novel drug in clinical trials, is of particular interest as cancer therapy because it can induce apoptosis in cancer cells but not in normal cells. Since some cancers develop resistance to TRAIL, safe and effective methods of TRAIL sensitization are of clinical interest. We explored how chemotherapy and oxidative stress affect TRAIL sensitivity and expression of proteins in the apoptotic pathway.

Materials And Methods: Sensitivity to TRAIL was assessed in viability assays. Apoptosis was measured by caspase-3/7 activity and/or nuclear condensation using Hoechst staining. Western blotting was used to determine cleavage, phosphorylation or alterations in protein expression.

Results: TRAIL decreased the viability of 5637 but not of J82 or T24 bladder carcinoma cells (ATCC(R)). Chemotherapy with doxorubicin or cisplatin (Ben Venue Laboratories, Bedford, Ohio) decreased the expression of the anti-apoptotic protein cFLIP(S) and increased caspase-8 cleavage, reversing TRAIL resistance in T24 cells. Specific targeting of cFLIP(S) by siRNA was insufficient for sensitization to TRAIL in T24 cells. However, chemotherapy mediated TRAIL sensitization was mimicked by low concentrations of H(2)O(2), which resulted in the phosphorylation of translation EF2 and decreased the expression of several short half-life, anti-apoptotic proteins, including FLIP(S), XIAP and survivin.

Conclusions: Inducing oxidative stress by low H(2)O(2) concentrations may reverse TRAIL resistance. This warrants the further exploration of H(2)O(2) as an adjuvant intravesical treatment to lower the apoptotic threshold of bladder cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749573PMC
http://dx.doi.org/10.1016/j.juro.2009.05.005DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
cancer cells
12
trail
11
bladder cancer
8
anti-apoptotic proteins
8
trail sensitization
8
decreased expression
8
trail resistance
8
t24 cells
8
cells
7

Similar Publications

Tissue remodeling during high-altitude pulmonary edema in rats: Biochemical and histomorphological analysis.

Tissue Cell

January 2025

Department of Human and Animal Physiology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia; Research Institute of Biology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia. Electronic address:

High altitude characterized by the low partial pressure of the oxygen is a life-threatening condition that contributes to the development of acute pulmonary edema and hypoxic lung injury. In this study, we aimed to investigate the contribution of some inflammatory and oxidative stress markers along with antioxidant system enzymes in the pathogenesis of HAPE (high-altitude pulmonary edema) formation. We incorporated the study on 42 male rats to unravel the role of mast cells (MCs) and TNF-α in the lung after the effect of acute hypobaric hypoxia.

View Article and Find Full Text PDF

Objective: Silicosis is a pneumoconiosis characterized by fibrosis of the lung parenchyma caused by the inhalation of silica particles. Silica dust inhalation is associated with inflammation and induction of oxidative stress in the lungs. This oxidative stress affects telomeres, which are short tandem DNA repeats that cap the end of linear chromosomes.

View Article and Find Full Text PDF

The aim of this study was to investigate the changes in the level of oxidative stress and lysozyme-like and phenoloxidase (PO) activity under the influence of nosemosis. Honeybees were kept in natural (apiary) and artificial (laboratory) conditions. In this study, it was shown for the first time that honeybees kept in apiaries have higher levels and activity of the studied parameters than honeybees kept in the laboratory.

View Article and Find Full Text PDF

Present study aimed at improving the immune and antioxidant response of Pacific white shrimp (Litopenaeus vannamei) cultured at high stocking density fed with 0.2% supplementation of lauric acid (LA) and N-acetyl-L-cysteine (NAC). Shrimp (initial average weight = 0.

View Article and Find Full Text PDF

Background: The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC.

Objective: Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!