A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effects of amino acids on glucose metabolism of isolated rat skeletal muscle are independent of insulin and the mTOR/S6K pathway. | LitMetric

The effects of amino acids on glucose metabolism of isolated rat skeletal muscle are independent of insulin and the mTOR/S6K pathway.

Am J Physiol Endocrinol Metab

Dept. of Medicine III, Div. of Endocrinology and Metabolism, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.

Published: September 2009

Two mechanisms have been proposed for the modulation of skeletal muscle glucose metabolism by amino acids. Whereas studies on humans and cultured cells suggested acute insulin desensitization via mammalian target of rapamycin (mTOR) and its downstream target p70 S6 kinase (S6K), investigations using native specimens of rat muscle hinted at impairment of glucose oxidation by competition for mitochondrial oxidation. To better understand these seemingly contradictory findings, we explored the effects of high concentrations of mixed amino acids on fuel metabolism and S6K activity in freshly isolated specimens of rat skeletal muscle. In this setting, increasing concentrations of amino acids dose-dependently reduced the insulin-stimulated rates of CO(2) production from glucose and palmitate (decrease in glucose oxidation induced by addition of 5.5, 11, 22, and 44 mmol/l amino acids:--16 +/- 3, -25 +/- 7, -44 +/- 4, -62 +/- 4%; P < 0.02 each). This effect could not be attributed to insulin desensitization, because it was not accompanied by any reduction of insulin-stimulated glucose transport [+12 +/- 16, +17 +/- 22, +21 +/- 33, +13 +/- 12%; all nonsignificant (NS)] or glycogen synthesis (+1 +/- 6, -5 +/- 6, -9 +/- 8, +6 +/- 5%; all NS) and because it persisted without insulin stimulation. Abrogation of S6K activity by the mTOR blocker rapamycin failed to counteract amino acid-induced inhibition of glucose and palmitate oxidation, which therefore was obviously independent of mTOR/S6K signaling (decrease in glucose oxidation by addition of 44 mmol/l amino acids: without rapamycin, -60 +/- 4%; with rapamycin, -50 +/- 13%; NS). We conclude that amino acids can directly affect muscle glucose metabolism via two mechanisms, mTOR/S6K-mediated insulin desensitization and mitochondrial substrate competition, with the latter predominating in isolated rat muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00061.2009DOI Listing

Publication Analysis

Top Keywords

amino acids
24
+/-
14
glucose metabolism
12
skeletal muscle
12
insulin desensitization
12
glucose oxidation
12
+/- +/-
12
glucose
9
isolated rat
8
rat skeletal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!