Leucyl-tRNA synthetase (LeuRS) is an essential RNA splicing factor for yeast mitochondrial introns. Intracellular experiments have suggested that it works in collaboration with a maturase that is encoded within the bI4 intron. RNA deletion mutants of the large bI4 intron were constructed to identify a competently folded intron for biochemical analysis. The minimized bI4 intron was active in RNA splicing and contrasts with previous proposals that the canonical core of the bI4 intron is deficient for catalysis. The activity of the minimized bI4 intron was enhanced in vitro by the presence of the bI4 maturase or LeuRS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785312PMC
http://dx.doi.org/10.1074/jbc.M109.031179DOI Listing

Publication Analysis

Top Keywords

bi4 intron
20
rna splicing
8
minimized bi4
8
intron
7
bi4
6
leucyl-trna synthetase-dependent
4
synthetase-dependent -independent
4
-independent activation
4
activation group
4
group intron
4

Similar Publications

Ccm1p is a nuclear-encoded PPR (pentatricopeptide repeat) protein that localizes into mitochondria of Saccharomyces cerevisiae. It was first defined as an essential factor to remove the bI4 [COB (cytochrome b) fourth intron)] and aI4 [COX1 (cytochrome c oxidase subunit 1) fourth intron] of pre-mRNAs, along with bI4 maturase, a protein encoded by part of bI4 and preceding exons that removes the intronic RNA sequence that codes for it. Later on, Ccm1p was described as key to maintain the steady-state levels of the mitoribosome small subunit RNA (15S rRNA).

View Article and Find Full Text PDF

Leucyl-tRNA synthetase (LeuRS) is an essential RNA splicing factor for yeast mitochondrial introns. Intracellular experiments have suggested that it works in collaboration with a maturase that is encoded within the bI4 intron. RNA deletion mutants of the large bI4 intron were constructed to identify a competently folded intron for biochemical analysis.

View Article and Find Full Text PDF

Leucyl-tRNA synthetase (LeuRS) performs dual essential roles in group I intron RNA splicing as well as protein synthesis within the yeast mitochondria. Deletions of the C terminus differentially impact the two functions of the enzyme in splicing and aminoacylation in vivo. Herein, we determined that a fiveamino acid C-terminal deletion of LeuRS, which does not complement a null strain, can form a ternary complex with the bI4 intron and its maturase splicing partner.

View Article and Find Full Text PDF

Yeast mitochondrial leucyl-tRNA synthetase (LeuRS) binds to the bI4 intron and collaborates with the bI4 maturase to aid excision of the group I intron. Deletion analysis isolated the inserted LeuRS CP1 domain as a critical factor in the protein's splicing activity. Protein fragments comprised of just the LeuRS CP1 region rescued complementation of a yeast strain that expressed a splicing-defective LeuRS.

View Article and Find Full Text PDF

The imported mitochondrial leucyl-tRNA synthetase (NAM2p) and a mitochondrial-expressed intron-encoded maturase protein are required for splicing the fourth intron (bI4) of the yeast cob gene, which expresses an electron transfer protein that is essential to respiration. However, the role of the tRNA synthetase, as well as the function of the bI4 maturase, remain unclear. As a first step towards elucidating the mechanistic role of these protein splicing factors in this group I intron splicing reaction, we tested the hypothesis that both leucyl-tRNA synthetase and bI4 maturase interact directly with the bI4 intron.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!