We have previously shown that histone H3 is transiently phosphorylated at Thr3 during mitosis. Extending these studies, we now report that phosphorylated Thr3 is always in cis to trimethylated Lys4 and dimethylated Arg8, forming a new type of combinatorial modification, which we have termed PMM. PMM-marked chromatin emerges at multiple, peripheral sites of the prophase nucleus, then forms distinct clusters at the centric regions of metaphase chromosomes, and finally spreads (as it wanes) to the distal areas of segregating chromatids. The characteristic prophase pattern can be reproduced by expressing ectopically the kinase haspin at interphase, suggesting that the formation of the PMM signature does not require a pre-existing mitotic environment. On the other hand, the ;dissolution' and displacement of PMM clusters from a centric to distal position can be induced by partial dephosphorylation or chromosome unravelling, indicating that these changes reflect the regulated grouping and scrambling of PMM subdomains during cell division. Formation of PMM is prevented by haspin knockdown and leads to delayed exit from mitosis. However, PMM-negative cells do not exhibit major chromosomal defects, suggesting that the local structures formed by PMM chromatin may serve as a ;licensing system' that allows quick clearance through the metaphase-anaphase checkpoint.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.043810 | DOI Listing |
Biology (Basel)
September 2024
Department of Urology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan.
Nucleus
December 2024
Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain.
In the nucleus, the VRK1 Ser-Thr kinase is distributed in nucleoplasm and chromatin, where it has different roles. VRK1 expression increases in response to mitogenic signals. VRK1 regulates cyclin D1 expression at G0 exit and facilitates chromosome condensation at the end of G2 and G2/M progression to mitosis.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2023
Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
Barrier-to-autointegration factor (Banf1) is a small DNA-bridging protein. The binding status of Banf1 to DNA is regulated by its N-terminal phosphorylation and dephosphorylation, which plays a critical role in cell proliferation. Banf1 can be phosphorylated at Ser4 into mono-phosphorylated Banf1, which is further phosphorylated at Thr3 to form di-phosphorylated Banf1.
View Article and Find Full Text PDFCell Death Discov
August 2023
Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
Many different types of stem cells utilize asymmetric cell division (ACD) to produce two daughter cells with distinct fates. Haspin-catalyzed phosphorylation of histone H3 at Thr3 (H3T3ph) plays important roles during mitosis, including ACD in stem cells. However, whether and how Haspin functions in ACD regulation remains unclear.
View Article and Find Full Text PDFJ Cell Biol
August 2022
Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
Centromere association of the chromosomal passenger complex (CPC; Borealin-Survivin-INCENP-Aurora B) and Sgo1 is crucial for chromosome biorientation, a process essential for error-free chromosome segregation. Phosphorylated histone H3 Thr3 (H3T3ph; directly recognized by Survivin) and histone H2A Thr120 (H2AT120ph; indirectly recognized via Sgo1), together with CPC's intrinsic nucleosome-binding ability, facilitate CPC centromere recruitment. However, the molecular basis for CPC-Sgo1 binding and how their physical interaction influences CPC centromere localization are lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!