Thiol alkylation is a powerful technique for the labeling of proteins. We report a new class of highly reactive, selective, and fluorogenic probes for thiols in aqueous solution at neutral pH, based on the 7-oxanorbornadiene (OND) framework. The maleate moiety in 7-oxabicyclo[2.2.1]hept-2,5-diene-2,3-dicarboxylic acid esters serves as both a tunable electrophile and an intramolecular quencher of an attached dansyl fluorophore. Thiols have been found to add with high rates (second-order rate constants of 40-200 M(-1) s(-1)) to give adducts that exhibit enhancements of fluorescence intensity up to 180-fold. The resulting adducts are also versatile with respect to cleavage (release) reactions by two mechanisms. First, retro-Diels-Alder fragmentation occurs with half-lives from days to weeks at room temperature, and an epoxide derivative is also reported that is incapable of cycloreversion cleavage. Second, monoamide OND derivatives undergo rapid closure to succinimides upon thiol addition, providing a thiol-triggered mechanism for immediate alcohol release. Peptides and proteins containing free thiol groups were labeled with OND electrophiles with high chemoselectivity. Since the system is so easily assembled from readily accessible modules, various functional groups can be added to OND linkers to allow the attachment of other molecules of interest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166955 | PMC |
http://dx.doi.org/10.1021/ja809345d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!