The vascular endothelial growth factor 165 (VEGF(165)) is the predominant form of the complex VEGF-A family. Its angiogenic effect is involved in many physiological and pathological events. For this reason, its roles as a potential biomarker and as a therapeutic drug have been considered. Nevertheless, very little is known about the existence of different forms of VEGF(165) arising from glycosylation and potentially from other PTMs. This aspect is important because different forms may differ in biological activity (therapeutic drug application) and the pattern of the different forms can vary with pathological changes (biomarker application). In this work a CE-MS method to separate up to seven peaks containing, at least, 19 isoforms of intact VEGF(165) is described. Comparison between human VEGF(165) expressed in a glycosylating system, i.e. insect cells, and in a non-glycosylating system, i.e. E. coli cells, has been carried out. The method developed provides structural information (mass fingerprint) about the different forms of VEGF(165) and after the deconvolution and the analysis of the MS spectra, PTMs pattern of VEGF(165) including glycosylation and loss of amino acids at the N- and C-terminus was identified. Glycans involved in PTMs promoting different glycoforms observed in the CE-MS fingerprint were confirmed by MALDI-MS after deglycosylation with peptide N-glycosidase F. This approach is a starting point to study the role of VEGF(165) as a potential biomarker and to perform quality control of the drug during manufacturing. To our knowledge this is the first time that a CE-MS method for the analysis of VEGF(165) has been developed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.200800738 | DOI Listing |
Sci Rep
January 2025
Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg St. 1, 30625, Hannover, Lower Saxony, Germany.
Treatment of severely injured patients represents a major challenge, in part due to the unpredictable risk of major adverse events, including death. Preemptive personalized treatment aimed at preventing these events is a crucial objective of patient management; however, the currently available scoring systems provide only moderate guidance. Biomarkers from proteomics/peptidomics studies hold promise for improving the current situation, ultimately enabling precision medicine based on individual molecular profiles.
View Article and Find Full Text PDFTalanta
December 2024
Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic. Electronic address:
In this work, we present the synthesis and application of fluorescent rhodamine B hydrazide for the derivatization of simple oligosaccharides and complex glycans using a hydrazone formation chemistry approach. The labeling conditions and the experimental setup of CE/LIF were optimized by analyzing oligosaccharide standards. The CE/LIF separations were performed in polybrene-coated capillaries eliminating the need for the purification step after derivatization.
View Article and Find Full Text PDFAnal Chem
December 2024
Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
Mass spectrometry (MS)-based metabolomics often rely on separation techniques when analyzing complex biological specimens to improve method resolution, metabolome coverage, quantitative performance, and/or unknown identification. However, low sample throughput and complicated data preprocessing procedures remain major barriers to affordable metabolomic studies that are scalable to large populations. Herein, we introduce PeakMeister as a new software tool in the R statistical environment to enable standardized processing of serum metabolomic data acquired by multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS), a high-throughput separation platform (<4 min/sample) which takes advantage of a serial injection format of 13 samples within a single analytical run.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China; Key Laboratory of Advanced Mass spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo, 315211, China.
B-complex vitamins are essential micronutrients that maintaining health, and provide (individually/simultaneously) many important biological actions in organism. Therefore, sensitive, reliable analytical method to determine B-complex vitamins simultaneously in actual samples is significant. Conventional analytical methods for vitamins analysis are usually labor-intensive, time-consuming and mostly do not allow the simultaneous determination.
View Article and Find Full Text PDFElectrophoresis
December 2024
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Commonly used analytical techniques for polyamine analysis, including derivatization and mixed-mode liquid chromatography (LC), have inherent disadvantages. Capillary electrophoresis (CE) is uniquely suited to analyze small, highly charged molecules because analytes are separated on the basis of their electrophoretic mobility, not polarity or association with a stationary phase. Microfluidic CE-mass spectrometry (mCE-MS) is a relatively recent addition to commercially available CE offerings that streamlines traditional CE-MS interfacing and has the potential to improve upon classic CE challenges to robustness and reproducibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!