Acyl carrier protein is an integral component of many cellular metabolic processes. A number of studies have reported self-acylation behavior in acyl carrier proteins. Although ACPs exhibit high levels of similarity in their primary and tertiary structures, self-acylation behavior is restricted to only some ACPs that can be classified into two major families based on their function. The first family of ACPs is involved in polyketide biosynthesis, whereas the second family participates in fatty acid synthesis. Facilitated by the growing number of genome sequences available for analyses, large-scale phylogenetic studies were used in these studies to uncover as to how self-acylation behavior of acyl carrier proteins is linked with the evolution of metabolic pathways in organisms. These studies show that self-acylation behavior in acyl carrier proteins was lost during the course of evolution, with certain organisms and organelles viz. plastids, retaining it for specified functions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/iub.224DOI Listing

Publication Analysis

Top Keywords

acyl carrier
20
carrier proteins
16
self-acylation behavior
16
behavior acyl
12
self-acylation
5
acyl
5
carrier
5
evolutionary significance
4
significance self-acylation
4
self-acylation property
4

Similar Publications

Roles of acyl carrier proteins in ladderane fatty acid producing-organisms.

Biochim Biophys Acta Gen Subj

January 2025

Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany. Electronic address:

Ladderanes are highly strained hydrocarbons consisting of two or more linearly concatenated cyclobutane rings. Strikingly, ladderane moieties are part of unique fatty acids and fatty alcohols that are exclusively found in the membrane lipids of anaerobic ammonium-oxidizing (anammox) bacteria. These bacteria express a distinctive gene cluster (cluster I) that has been suggested to be responsible for ladderane fatty acid (FA) biosynthesis in addition to a cluster likely involved in canonical FA biosynthesis (cluster III).

View Article and Find Full Text PDF

Structure and catalytic mechanism of exogenous fatty acid recycling by AasS, a versatile acyl-ACP synthetase.

Nat Struct Mol Biol

January 2025

Key Laboratory of Multiple Organ Failure (Ministry of Education), Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Fatty acids (FAs) are essential building blocks for all the domains of life, of which bacterial de novo synthesis, called type II FA synthesis (FAS II), is energetically expensive. The recycling of exogenous FAs (eFAs) partially relieves the FAS II demand and, therefore, compromises the efficacy of FAS II-directed antimicrobials. The versatile acyl-acyl carrier protein (ACP) synthetase, AasS, enables bacterial channeling of diverse eFA nutrients through holo-ACP, an activated form of ACP.

View Article and Find Full Text PDF

(β-ketoacyl-acyl carrier protein (ACP) synthases II), (fatty acid thioesterases), (stearoyl-ACP desaturase), and (fatty acid desaturases) are the vital gene families involved in fatty acid (FA) synthesis in L. However, information on the number and location of these genes and which ones are key to the formation of FAs in fruit seeds and pulp was not complete. Our study aimed to solve this issue using the available genomic sequences and transcriptome data that we obtained.

View Article and Find Full Text PDF

Fungal highly reducing polyketide synthases (hrPKSs) are remarkable multidomain enzymes that catalyse the biosynthesis of a diverse range of structurally complex compounds. During biosynthesis, the ketosynthase (KS) and acyltransferase (AT) domains of the condensing region are visited by the acyl carrier protein (ACP) domain during every cycle, catalysing chain priming and elongation reactions. Despite their significance, our comprehension of how these steps contribute to biosynthetic fidelity remains poorly understood.

View Article and Find Full Text PDF

Background: Mutations in the LARS2 gene are correlated with Perrault syndrome, a rare autosomal recessive genetic disorder, that is typically characterized by sensorineural hearing loss and ovarian insufficiency.

Methods: Whole-exome sequencing and mutational analysis were employed to identify hearing loss-causing genes in a Chinese family from the Guangxi Zhuang Autonomous Region. Clinical phenotypes, audiological data, and color Doppler ultrasound of the family were collected, and a series of computer software were used to analyze the impact of genetic variations on protein structure and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!