Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized in man by parathyroid, pancreatic, pituitary and adrenal tumours. The MEN1 gene encodes a 610-amino acid protein (menin) which is a tumour suppressor. To investigate the in vivo role of menin, we developed a mouse model, by deleting Men1 exons 1 and 2 and investigated this for MEN1-associated tumours and serum abnormalities. Men1(+/-) mice were viable and fertile, and 220 Men1(+/-) and 94 Men1(+/+) mice were studied between the ages of 3 and 21 months. Survival in Men1(+/-) mice was significantly lower than in Men1(+/+) mice (<68% vs >85%, P<0.01). Men1(+/-) mice developed, by 9 months of age, parathyroid hyperplasia, pancreatic tumours which were mostly insulinomas, by 12 months of age, pituitary tumours which were mostly prolactinomas, and by 15 months parathyroid adenomas and adrenal cortical tumours. Loss of heterozygosity and menin expression was demonstrated in the tumours, consistent with a tumour suppressor role for the Men1 gene. Men1(+/-) mice with parathyroid neoplasms were hypercalcaemic and hypophosphataemic, with inappropriately normal serum parathyroid hormone concentrations. Pancreatic and pituitary tumours expressed chromogranin A (CgA), somatostatin receptor type 2 and vascular endothelial growth factor-A. Serum CgA concentrations in Men1(+/-) mice were not elevated. Adrenocortical tumours, which immunostained for 3-beta-hydroxysteroid dehydrogenase, developed in seven Men1(+/-) mice, but resulted in hypercorticosteronaemia in one out of the four mice that were investigated. Thus, these Men1(+/-) mice are representative of MEN1 in man, and will help in investigating molecular mechanisms and treatments for endocrine tumours.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4439740PMC
http://dx.doi.org/10.1677/ERC-09-0082DOI Listing

Publication Analysis

Top Keywords

multiple endocrine
8
endocrine neoplasia
8
neoplasia type
8
parathyroid pancreatic
8
pancreatic pituitary
8
pituitary adrenal
8
adrenal tumours
8
men1+/- mice
8
men1+/+ mice
8
mice
5

Similar Publications

Progress report on multiple endocrine neoplasia type 1.

Fam Cancer

January 2025

Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Multiple endocrine neoplasia type 1 (MEN1) syndrome is an autosomal dominant disorder caused by a germline pathogenic variant in the MEN1 tumor suppressor gene. Patients with MEN1 have a high risk for primary hyperparathyroidism (PHPT) with a penetrance of nearly 100%, pituitary adenomas (PitAd) in 40% of patients, and neuroendocrine neoplasms (NEN) of the pancreas (40% of patients), duodenum, lung, and thymus. Increased MEN1-related mortality is mainly related to duodenal-pancreatic and thymic NEN.

View Article and Find Full Text PDF

Relationship of modifiable risk factors with the incidence of thyroid cancer: a worldwide study.

BMC Res Notes

January 2025

Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.

Background: Thyroid cancer is one of the most common cancers of the endocrine system. The incidence of this cancer has increased in many countries. Many cases of thyroid cancer do not have any symptoms.

View Article and Find Full Text PDF

Adolescent primary hyperparathyroidism.

Best Pract Res Clin Endocrinol Metab

January 2025

Department of Endocrinology, Seth G.S. Medical College and King Edward Memorial Hospital, Mumbai, India. Electronic address:

Adolescent primary hyperparathyroidism (PHPT) is a rare endocrine disorder bearing distinctions from the adult form. This review examines its unique aspects, focusing on clinical presentation, genetic etiologies, genotype-phenotype correlations, and therapeutic management. Adolescent PHPT often has a genetic basis, whether familial, syndromic, or apparently sporadic, and identifying the underlying genetic cause is important for patient care.

View Article and Find Full Text PDF

Unveiling emerging polycyclic aromatic compounds in the urban atmospheric particulate matter.

Environ Int

January 2025

State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong 999077, China.

Despite the ubiquity and complexity of atmospheric polycyclic aromatic compounds (PACs), many of these compounds are largely unknown and lack sufficient toxicity data for comprehensive risk assessments. In this study, nontarget screening assisted by in-house and self-developed spectra databases was, therefore, employed to identify PACs in atmospheric particulate matter collected from multiple outdoor settings. Additionally, absorption, distribution, metabolism, excretion, and toxicity properties were evaluated to indicate PAC's overall abilities to cause adverse outcomes and incorporated into a novel health risk assessment model to assess their inhalation risks.

View Article and Find Full Text PDF

Mouse models for metabolic health research: molecular mechanism of exercise effects on health improvement through adipose tissue remodelling.

J Physiol

January 2025

Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.

Exercise provides health benefits to multiple metabolic tissues through complex biological pathways and interactions between organs. However, investigating these complex mechanisms in humans is still limited, making mouse models extremely useful for exploring exercise-induced changes in whole-body metabolism and health. In this review, we focus on gaining a broader understanding of the metabolic phenotypes and molecular mechanisms induced by exercise in mouse models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!