Extracellular beta-amyloid (Abeta) deposit is considered as one of the primary factors in inducing Alzheimer's disease (AD). However, the mechanism of Abeta deposition on the cell membrane and the induced cytotoxicity are still unclear. On the basis of the previous reports and results, we propose the "Recruiting Hypothesis" on the interaction between the plasma membrane and Abeta. Recently, many studies focused on cholesterol, which is considered as an important factor for AD. The most challenging issue in studying the cholesterol is non-ideal mixing behavior and non-dynamic analysis. In the present study, we investigated the cholesterol recruitment in the lipid monolayer during the interaction between beta-amyloid peptides Abeta (1-40) and lipid monolayers by dynamic fluorescent imaging analysis. Results from lipid monolayer trough studies showed that the rate of Abeta adsorption onto lipid monolayer is mainly due to the electrostatic effect which is sensitive to the lipid monolayer composition. From the fluorescence imaging analysis, the interaction of Abeta with lipid monolayer containing negative charge lipid and cholesterol brings out the recruiting behavior of the cholesterol and reduces the fluidity of lipid. The present study not only demonstrates the technical application for monitoring the dynamic molecular behaviors at the interface but also reveals the roles to distinguish lipid molecules on the Abeta-membrane interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2009.06.027 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
Bacterial bots are potent vehicles in cancer theranostics where bacteria are used typically as cargos for drug delivery. However, living bacteria themselves may aid in their efficiency in killing the tissues. For example, living bacteria may be functionalized with magnetic and luminescent nanoparticles along with drugs in order to achieve the targeted delivery and release of payloads that would include the bacteria.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy.
Purpose: Dimethyl fumarate (DMF), the first-line oral therapy for relapsing-remitting multiple sclerosis, is rapidly metabolized into monomethyl fumarate. The DMF oral administration provokes gastrointestinal discomfort causing treatment withdrawal. The present study aimed to develop an innovative formulation for DMF nasal administration.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan USA.
Plastid-localized plastoglobules (PGs) are monolayer lipid droplets typically associated with the outer envelope of thylakoid membranes in chloroplasts. The size and number of PGs can vary significantly in response to different environmental stimuli. Since the early 21st century, a variety of proteins attached to the surface of PGs have been identified and experimentally characterized using advanced biotechnological techniques, revealing their biological functions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania.
The present study aimed to investigate the ability of an aqueous extract derived from mustard seed meal to counteract the effects of endotoxin lipopolysaccharide (LPS) on the intestinal epithelium. Caco-2 cells were cultured together with HT29-MTX and used as a cellular model to analyze critical intestinal parameters, such as renewal, integrity, innate immunity, and signaling pathway. Byproducts of mustard seed oil extraction are rich in soluble polysaccharides, proteins, allyl isothiocyanates, and phenolic acids, which are known as powerful antioxidants with antimicrobial and antifungal properties.
View Article and Find Full Text PDFMolecules
January 2025
Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland.
This study aimed to evaluate the oxidative stability and surface properties of cold-pressed vegetable oils using the Langmuir monolayer technique. Six oils-milk thistle, evening primrose, flaxseed, camelina sativa, black cumin, and pumpkin seed-were analyzed to investigate their molecular organization and behavior at the air/water interface, particularly after undergoing oxidation. The results showed that oils rich in polyunsaturated fatty acids (PUFAs), such as flaxseed and evening primrose oils, formed monolayers with larger molecular areas and lower stability, which led to faster oxidative degradation, especially under thermal conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!