A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biodegradation of bisphenol A and bisphenol F in the rhizosphere sediment of Phragmites australis. | LitMetric

The accelerated removal of bisphenols A and F (BPA, BPF) was observed in the rhizosphere sediment of Phragmites australis, while they persisted in the absence of P. australis. A BPA-degrading bacterium, Novosphingobium sp. strain TYA-1, and a BPF-degrading bacterium, Sphingobium yanoikuyae strain TYF-1, were isolated from the rhizosphere of P. australis. The results suggested that interactions between P. australis and these bacteria can accelerate the removal of bisphenols from sediment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2009.03.011DOI Listing

Publication Analysis

Top Keywords

rhizosphere sediment
8
sediment phragmites
8
phragmites australis
8
removal bisphenols
8
australis
5
biodegradation bisphenol
4
bisphenol bisphenol
4
bisphenol rhizosphere
4
australis accelerated
4
accelerated removal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!