The structural heterogeneity and thermal denaturation of a dansyl-labeled four-helix bundle homodimeric peptide was studied with steady-state and time-resolved fluorescence spectroscopy and with circular dichroism (CD). At room temperature the fluorescence decay of the polarity-sensitive dansyl, located in the hydrophobic core region, can be described by a broad distribution of fluorescence lifetimes, reflecting the heterogeneous microenvironment. However, the lifetime distribution is nearly bimodal, which we ascribe to the presence of two major conformational subgroups. Since the fluorescence lifetime reflects the water content of the four-helix bundle conformations, we can use the lifetime analysis to monitor the change in hydration state of the hydrophobic core of the four-helix bundle. Increasing the temperature from 9 degrees C to 23 degrees C leads to an increased population of molten-globule-like conformations with a less ordered helical backbone structure. The fluorescence emission maximum remains constant in this temperature interval, and the hydrophobic core is not strongly affected. Above 30 degrees C the structural dynamics involve transient openings of the four-helix bundle structure, as evidenced by the emergence of a water-quenched component and less negative CD. Above 60 degrees C the homodimer starts to dissociate, as shown by the increasing loss of CD and narrow, short-lived fluorescence lifetime distributions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711339 | PMC |
http://dx.doi.org/10.1016/j.bpj.2009.04.055 | DOI Listing |
J Mol Biol
January 2025
Instituto de Investigaciones Biomédicas Sols-Morreale CSIC-UAM, 28029 Madrid, Spain. Electronic address:
A key step in autophagy is the conjugation by the E3-like Atg12-Atg5-Atg16 complex of the ubiquitin-like protein Atg8 to phosphatidylethanolamine on the autophagosomal membrane, a process known as lipidation. Previous work in yeast showed that recruitment of the E3-like complex to the preautophagosomal structure is mediated by the interaction of Atg16 with the phosphatidylinositol 3-phosphate-binding protein Atg21, and by the association of Atg12 with the scaffold protein of the Atg1 kinase complex, Atg17. Here, we conducted a reverse two-hybrid screen to identify residues in Atg17 and Atg12 critical for Atg17-Atg12 binding, and used these data to generate a docking model of Atg12-Atg5-Atg16 with the Atg17 complex.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
January 2025
Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France.
The apicomplexan AP2 (ApiAP2) proteins are the best characterized family of DNA-binding proteins in Plasmodium spp. malaria parasites. Apart from the AP2 DNA-binding domain, there is little sequence similarity between ApiAP2 proteins.
View Article and Find Full Text PDFFEBS Open Bio
January 2025
Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.
Neurotransmitter release is triggered in microseconds by the two C domains of the Ca sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 CB domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca-binding loops away from the fusion site.
View Article and Find Full Text PDFJ Inorg Biochem
January 2025
Yusuf Hamied Department of Chemistry, Lensfield Rd, Cambridge CB2 1EW, UK.
By introducing new-to-nature transformations, artificial metalloenzymes hold great potential for expanding the biosynthetic toolbox. The chemistry of an active cofactor in these enzymes is highly dependent on how the holoprotein is assembled, potentially limiting the choice of organometallic complexes amenable to incorporation and ability of the protein structure to influence the metal centre. We have previously reported a method utilising ligand exchange as a means to introduce ruthenium-arene fragments into a four-helix bundle protein.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.
Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!