Motivated by experiments on condensed DNA phases in binary mixtures of water and a low-dielectric solute, we develop a theory for the electrostatic contribution to solute exclusion from a highly charged phase, within the continuum approximation of the medium. Because the electric field is maximum at the surface of each ion, the electrostatic energy is dominated by the Born energy; interactions between charges are of secondary importance. Neglecting interactions and considering only the competition between the Born energy and the free energy of mixing, we predict that low dielectric solutes are excluded from condensed DNA phases in water-cosolvent mixtures. This suggests that the traditional continuum electrostatic approach of modeling binary mixtures with a uniform dielectric constant needs to be modified. The linking of solute exclusion to solute dielectric properties also suggests a mechanism for predicting the electrostatic contribution to preferential hydration of polar and charged surfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711323 | PMC |
http://dx.doi.org/10.1016/j.bpj.2009.04.033 | DOI Listing |
Sci Rep
January 2025
Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, No.199 Donggang West Road, 730000, Gansu Province, China.
Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen and progesterone receptors, and lack of human epidermal growth factor receptor 2 (HER2) expression. Traditional Chinese medicine (TCM) has demonstrated promising efficacy in treating TNBC. This study explored the mechanisms of pachymic acid (PA) on TNBC by merging network pharmacology with experimental validation.
View Article and Find Full Text PDFACS Macro Lett
January 2025
Department of Physics, Kent State University, Kent, Ohio 44242, United States.
We investigate the impact of poly adenine (poly-A) sequences on the type and stability of liquid crystalline (LC) phases formed by concentrated solutions of gapped DNA (two duplex arms bridged by a flexible single strand) using synchrotron small-angle X-ray scattering and polarizing optical microscopy. While samples with mixed sequence form layered (smectic) phases, poly-A samples demonstrate a columnar phase at lower temperatures (5-35 °C), not previously observed in GDNA samples, and a smectic-B phase of exceptional stability at higher temperatures (35-65 °C). We present a model that connects the formation of these LC phases with the unique characteristics of poly-A sequences, which manifest in various biological contexts, including DNA condensation and nucleosome formation.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
January 2025
Department of Medical Oncology (Lab), Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India. Electronic address:
Lamins, which are crucial type V intermediate filament proteins found in the nuclear lamina, are essential for maintaining the stability and function of the nucleus in higher vertebrates. They are classified into A- and B-types, and their distinct expression patterns contribute to cellular survival, development, and functionality. Lamins emerged during the transition from open to closed mitosis, with their complexity increasing alongside organism evolution.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstr. 55 38106 Braunschweig Germany
The antimicrobial properties of silver and silver complexes have been known in medicine since ancient times. However, limitations in stability and solubility have impaired medicinal chemistry and drug development research. With the advent of N-heterocyclic carbenes (NHC) as ligands, the development of synthesis methods for organometallic silver species of the type (NHC)AgX (where X = halide) has brought significant improvements, and the class of antimicrobial silver NHC complexes has emerged.
View Article and Find Full Text PDFbioRxiv
January 2025
Dept. of Biochemistry, University of Colorado, Boulder, CO, 80303, USA.
RNA polymerase II (RNAPII) is regulated by sequence-specific transcription factors (TFs) and the pre-initiation complex (PIC): TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, Mediator. TFs and Mediator contain intrinsically-disordered regions (IDRs) and form phase-separated condensates, but how IDRs control RNAPII function remains poorly understood. Using purified PIC factors, we developed a Real-time In-vitro Fluorescence Transcription assay (RIFT) for second-by-second visualization of RNAPII transcription at hundreds of promoters simultaneously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!