There have been several reports of parkinsonian syndrome arising from a mass effect from subdural haematomas. In this study, we present a case of parkinsonian syndrome caused by a subacute subdural haematoma. Evacuation of the haematoma resulted in the disappearance of parkinsonian symptoms in this case. Parkinsonism is not common complication of subdural haematoma; surgical treatment of those cases is associated with favourable outcome, without the need for antiparkinsonian medication.
Download full-text PDF |
Source |
---|
Sensors (Basel)
December 2024
School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
Freezing of gait (FOG) is a walking disturbance that can lead to postural instability, falling, and decreased mobility in people with Parkinson's disease. This research used machine learning to predict and detect FOG episodes from plantar-pressure data and compared the performance of decision tree ensemble classifiers when trained on three different datasets. Dataset 1 ( = 11) was collected in a previous study.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.
Virtual reality (VR) has been used in research and clinical practice in the management of Parkinson's disease (PD), potentially enhancing physiotherapy. Adverse events (AEs) associated with VR applications in PD have been poorly explored. We conducted a randomized controlled trial to compare two 12-week interventions using physiotherapy and immersive VR, and analyzed the frequency and type of AEs occurring in 30 people with PD.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Faculty of Computer Science, Polish-Japanese Academy of Information Technology, 86 Koszykowa Street, 02-008 Warsaw, Poland.
Neurodegenerative diseases (NDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD), are debilitating conditions that affect millions worldwide, and the number of cases is expected to rise significantly in the coming years. Because early detection is crucial for effective intervention strategies, this study investigates whether the structural analysis of selected brain regions, including volumes and their spatial relationships obtained from regular T1-weighted MRI scans ( = 168, PPMI database), can model stages of PD using standard machine learning (ML) techniques. Thus, diverse ML models, including Logistic Regression, Random Forest, Support Vector Classifier, and Rough Sets, were trained and evaluated.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA.
Mobility tasks like the Timed Up and Go test (TUG), cognitive TUG (cogTUG), and walking with turns provide insights into the impact of Parkinson's disease (PD) on motor control, balance, and cognitive function. We assess the test-retest reliability of these tasks in 262 PD participants and 50 controls by evaluating machine learning models based on wearable-sensor-derived measures and statistical metrics. This evaluation examines total duration, subtask duration, and other quantitative measures across two trials.
View Article and Find Full Text PDFNutrients
December 2024
School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Background: Dietary intake of polyunsaturated fatty acids (PUFA) plays a significant role in the onset and progression of neurodegenerative diseases. Since the neuroprotective effects of n-3 PUFA have been widely validated, the role of n-6 PUFA remains debated, with their underlying mechanisms still not fully understood.
Methods: In this study, 169,295 participants from the UK Biobank were included to analyze the associations between dietary n-6 PUFA intake and neurodegenerative diseases using Cox regression models with full adjustments for potential confounders.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!