Animal models, consistent with the hypothesis of direct interaction of paraquat (PQ) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) with specific areas of the central nervous system have been developed to study Parkinson's disease (PD) in mice. These models have necessitated the creation of an analytical method for unambiguous identification and quantitation of PQ and structurally similar MPTP and 1-methyl-4-phenylpyridinium ion (MPP+) in brain tissue. A method for determination of these compounds was developed using microwave-assisted solvent extraction (MASE) and liquid chromatography-mass spectrometry. Extraction solvent and microwave conditions such as power and time were optimized to produce recoveries of 90% for PQ 78% for MPTP and 97% for its metabolite MPP+. The chromatographic separation was performed on a C8, column and detection was carried out using an ion trap as an analyzer with electrospray ionization. Mass spectrometer parameters such as heated capillary temperature, spray voltage, capillary voltage and others were also optimized for each analyte. Analysis was done in selective ion-monitoring (SIM) mode using m/z 186 for PQ, m/z 174 for MPTP, and m/z 170 for MPP+. The method detection limit for paraquat in matrix was 100 pg, 40 pg for MPTP, and 20 pg MPP+.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4264568 | PMC |
http://dx.doi.org/10.1007/s00216-009-2929-z | DOI Listing |
Int J Mol Sci
January 2025
College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
Cicadae Periostracum (CP) is a traditional Chinese animal-derived medicine with the potential to treat Parkinson's disease (PD). This study aims to explore the pharmacodynamic mechanisms of CP against PD-based on metabolomics technology and provide a theoretical basis for developing new anti-PD medicine. First, MPP-induced SH-SY5Y cells were used to evaluate the anti-PD activity of CP.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China.
: Parkinson's disease (PD) is a neurodegenerative disorder characterized by the involvement of ferroptosis in its pathological mechanism. In this study, the effects and mechanism of BRCA1-associated protein 1 (BAP1) on neuronal ferroptosis in PD were evaluated. : A PD mouse model was constructed by injecting mice with MPTP.
View Article and Find Full Text PDFCell Death Discov
December 2024
Department of Histoembryology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong Province, China.
Neuroinflammation induced by activation of microglial is a vital contributor to progression of Parkinson's disease (PD), emerging evidences suggested that ferroptosis played a pivotal role in microglial activation and subsequent dopaminergic neuron loss. Nevertheless, the fundamental pathogenesis of that ferroptosis contributes to PD is not yet sufficiently understood. Based on GEO dataset, ferroptosis related genes were found to be enriched in PD patients and MPTP mouse model of PD, among them, ATF4 was found to be dramatically differentially expressed.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China.
Circadian disruption is a risk factor for Parkinson's disease (PD). Ferroptosis, a cellular death process, assumes a pivotal role in the degeneration of dopaminergic neurons in PD. Despite its significance, the potential contribution of circadian clock proteins to PD through the modulation of ferroptosis remains elusive.
View Article and Find Full Text PDFNeurochem Res
December 2024
Department of Food and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea.
Neurotrophic factors are endogenous proteins that promote the survival of various neuronal cells. Increasing evidence has suggested a key role for brain-derived neurotrophic factor (BDNF) in the dopaminergic neurotoxicity associated with Parkinson's Disease (PD). This study explores the therapeutic potential of filbertone, a bioactive compound found in hazelnuts, in neurodegeneration, focusing on its effects on neurotrophic factors and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!