Low pressure CO(2) to dimethyl carbonate by the reaction with methanol promoted by acetonitrile hydration.

Chem Commun (Camb)

Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573, Japan.

Published: August 2009

CeO(2) catalysts catalyze the reaction of methanol with low pressure CO(2) to form dimethyl carbonate and the reaction was promoted by the combination with acetonitrile hydration over CeO(2).

Download full-text PDF

Source
http://dx.doi.org/10.1039/b909610hDOI Listing

Publication Analysis

Top Keywords

low pressure
8
pressure co2
8
dimethyl carbonate
8
carbonate reaction
8
reaction methanol
8
acetonitrile hydration
8
hydration ceo2
8
co2 dimethyl
4
methanol promoted
4
promoted acetonitrile
4

Similar Publications

Aims/hypothesis: UK standard care for type 2 diabetes is structured diabetes education, with no effects on HbA, small, short-term effects on weight and low uptake. We evaluated whether remotely delivered tailored diabetes education combined with commercial behavioural weight management is cost-effective compared with current standard care in helping people with type 2 diabetes to lower their blood glucose, lose weight, achieve remission and improve cardiovascular risk factors.

Methods: We conducted a pragmatic, randomised, parallel two-group trial.

View Article and Find Full Text PDF

Validating thermodynamic models is essential in experimental geosciences for exploring increasingly complex systems and developing analytical protocols. However, investigating solid-fluid equilibria in mm-sized experimental capsules poses several challenges, particularly in sulfur-bearing chemical systems. These include maintaining bulk fluid composition and performing quantitative analysis with extremely low amounts of synthesized fluid.

View Article and Find Full Text PDF

Genetic diversity is crucial to secure the survival and sustainability of ecosystems. Given anthropogenic pressure, as well as the projected alterations connected with the level and circulation of water, riparian forests are of particular concern. In this paper, we assessed the genetic variation of black poplar - one of the keystone tree species of riverine forests.

View Article and Find Full Text PDF

Liquid-liquid phase transitions play a pivotal role in various scientific disciplines and technological applications, ranging from biology to materials science and geophysics. Understanding the behavior of materials undergoing these transitions provides valuable insights into complex systems and their dynamic properties. This review explores the implications of liquid-liquid phase transitions, particularly focusing on the transition between low-density liquid (LDL) and high-density liquid (HDL) phases.

View Article and Find Full Text PDF

Introduction: We performed a systematic review and meta-analysis to investigate the effects of combining omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation with exercise training, as compared to exercise training alone, on body composition measures including body weight, body mass index (BMI), fat mass, body fat percentage, and lean body mass. Additionally, we determined the effects on cardiometabolic health outcomes including lipid profiles, blood pressure, glycemic markers, and inflammatory markers.

Method: Three primary electronic databases including PubMed, Web of Science, and Scopus were searched from inception to April 5, 2023 to identify original articles comparing n-3 PUFA supplementation plus exercise training versus exercise training alone, that investigated at least one of the following outcomes: fat mass, body fat percentage, lean body mass, triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), systolic (SBP) and diastolic (DBP) blood pressures, fasting glucose and insulin, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!