Here we present a high-resolution cytogenomic analysis of chicken microchromosome 16. We established the location of the major histocompatibility complex (MHC)-B and -Y subregions relative to each other and to the nucleolus organizer region (NOR) encoding the 18S-5.8S-28S ribosomal DNA. To do so, we employed multicolor fluorescence in situ hybridization using large-insert bacterial artificial chromosome clones with fully sequenced inserts or repetitive sequence probes specific for the subregion of interest. We show that the MHC-Y and -B regions are located on the same side of the NOR, rather than opposite ends, as previously proposed. On the q arm, the MHC-Y is closely adjacent to the NOR, whereas the MHC-B is distal near the q-terminus. A relatively large GC-rich region separates the 2 MHC subregions and includes a specialized structure, a secondary constriction. We propose that the GC-rich large physical distance is the basis for the lack of genetic linkage between the NOR and MHC-B and between the MHC-Y and -B. An integrated model for GGA 16 is presented that incorporates gene complex order in the context of key architectural features including p and q arms, primary (centromere) and secondary constrictions, telomeres, as well as AT- and GC-rich regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jhered/esp044 | DOI Listing |
J Anim Sci Biotechnol
January 2025
Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
Background: Chickens and ducks are vital sources of animal protein for humans. Recent pangenome studies suggest that a single genome is insufficient to represent the genetic information of a species, highlighting the need for more comprehensive genomes. The bird genome has more than tens of microchromosomes, but comparative genomics, annotations, and the discovery of variations are hindered by inadequate telomere-to-telomere level assemblies.
View Article and Find Full Text PDFMol Cytogenet
October 2024
School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
In last 100 years or so, much information has been accumulated on avian karyology, genetics, physiology, biochemistry and evolution. The chicken genome project generated genomic resources used in comparative studies, elucidating fundamental evolutionary processes, much of it funded by the economic importance of domestic fowl (which are also excellent model species in many areas). Studying karyotypes and whole genome sequences revealed population processes, evolutionary biology, and genome function, uncovering the role of repetitive sequences, transposable elements and gene family expansion.
View Article and Find Full Text PDFGenome Res
October 2024
Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA;
Understanding the evolution of chromatin conformation among species is fundamental to elucidate the architecture and plasticity of genomes. Nonrandom interactions of linearly distant loci regulate gene function in species-specific patterns, affecting genome function, evolution, and, ultimately, speciation. Yet, data from nonmodel organisms are scarce.
View Article and Find Full Text PDFComp Cytogenet
September 2024
Herzen State Pedagogical University of Russia, Saint Petersburg, Russia Herzen State Pedagogical University of Russia Saint Petersburg Russia.
Ribosomal RNA (18S, 5.8S, 28S) gene clusters in genomes form regions that consist of multiple tandem repeats. They are located on a single or several pairs of chromosomes and play an important role in the formation of the nucleolus responsible for the assembly of ribosome subunits.
View Article and Find Full Text PDFGenome
July 2024
Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil.
The genome organization of woodpeckers has several distinctive features e.g., an uncommon accumulation of repetitive sequences, enlarged Z chromosomes, and atypical diploid numbers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!