Rescue of DeltaF508-CFTR by the SGK1/Nedd4-2 signaling pathway.

J Biol Chem

Department of Anatomy, Physiology, and Genetics, Uniformed Services University School of Medicine, Bethesda, Maryland 20814, USA.

Published: September 2009

The most common mutation in cystic fibrosis (CF) is DeltaF508, which is associated with failure of the mutant cystic fibrosis transmembrane conductance regulator (CFTR) to traffic to the plasma membrane. By a still unknown mechanism, the loss of correctly trafficked DeltaF508-CFTR results in an excess of the epithelial sodium channel (ENaC) on the apical plasma membrane. ENaC trafficking is known to be regulated by a signaling pathway involving the glucocorticoid receptor, the serum- and glucocorticoid-regulated kinase SGK1, and the ubiquitin E3 ligase Nedd4-2. We show here that dexamethasone rescues functional expression of DeltaF508-CFTR. The half-life of DeltaF508-CFTR is also dramatically enhanced. Dexamethasone-activated DeltaF508-CFTR rescue is blocked either by the glucocorticoid receptor antagonist RU38486 or by the phosphatidylinositol 3-kinase inhibitor LY294002. Co-immunoprecipitation studies indicate that Nedd4-2 binds to both wild-type- and DeltaF508-CFTR. These complexes are inhibited by dexamethasone treatment, and CFTR ubiquitination is concomitantly decreased. We further show that knockdown of Nedd4-2 by small interfering RNA also corrects DeltaF508-CFTR trafficking. Conversely, knockdown of SGK1 by small interfering RNA completely blocks dexamethasone-activated DeltaF508-CFTR rescue. These data suggest that the SGK1/Nedd4-2 signaling pathway regulates both CFTR and ENaC trafficking in CF epithelial cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757227PMC
http://dx.doi.org/10.1074/jbc.M109.035345DOI Listing

Publication Analysis

Top Keywords

signaling pathway
12
sgk1/nedd4-2 signaling
8
cystic fibrosis
8
plasma membrane
8
enac trafficking
8
glucocorticoid receptor
8
dexamethasone-activated deltaf508-cftr
8
deltaf508-cftr rescue
8
small interfering
8
interfering rna
8

Similar Publications

Cisplatin, a platinum-based chemotherapeutic agent, can be used to treat cervical cancer (CC), but cisplatin resistance is increased during the cisplatin treatment. Long non-coding RNA PGM5-AS1 reportedly participates in CC tumorigenesis; however, its role in CC patients with cisplatin resistance has not been revealed. The present aimed to examine the role of PGM5-AS1 in modulating cisplatin resistance in CC.

View Article and Find Full Text PDF

Wnt signaling is a critical pathway implicated in cancer development, with Frizzled proteins, particularly FZD10, playing key roles in tumorigenesis and recurrence. This study focuses on the potential of repurposed FDA-approved drugs targeting FZD10 as a therapeutic strategy for nasopharyngeal carcinoma (NPC). The tertiary structure of human FZD10 was constructed using homology modeling, validated by Ramachandran plot and ProQ analysis.

View Article and Find Full Text PDF

Yu-Ping-Feng-San (YPF) is a famous classical Chinese medicine formula known for its ability to boost immunity. YPF has been applied to enhance the immune status of tumor patients in clinical practice. However, there is still a lack of research on its immune regulatory effects and mechanisms in the tumor microenvironment.

View Article and Find Full Text PDF

Resolvin D1 (RvD1) is an endogenous anti-inflammatory mediator that modulates the inflammatory response and promotes inflammation resolution. RvD1 has demonstrated neuroprotective effects in various central nervous system contexts; however, its role in the pathophysiological processes of intracerebral hemorrhage (ICH) and the potential protective mechanisms when combined with exercise rehabilitation remain unclear. A mouse model of ICH was established using collagenase, and treatment with RvD1 combined with three weeks of exercise rehabilitation significantly improved neurological deficits, muscle strength, learning, and memory in ICH mice while reducing anxiety-like behavior.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is a common cerebrovascular disease characterized by a high incidence, disability rate, and mortality. Epigallocatechin gallate (EGCG), a key catechin compound found in green tea, has received increasing attention for its potential neuroprotective and therapeutic effects in neurological disorders. Studies have indicated that EGCG may influence various signaling pathways and molecular targets, including the inhibition of oxidative stress, reduction of inflammatory responses, suppression of cell apoptosis, regulation of cell survival, and enhancement of autophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!